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Abstract

Logic programming with the stable model semantics is put forward as a novel con-
straint programming paradigm. This paradigm is interesting because it bring advan-
tages of logic programming based knowledge representation techniques to constraint
programming and because implementation methods for the stable model semantics
for ground (variable-free) programs have advanced significantly in recent years. For
a program with variables these methods need a grounding procedure for generating
a variable-free program. As a practical approach to handling the grounding prob-
lem a subclass of logic programs, domain restricted programs, is proposed. This
subclass enables efficient grounding procedures and serves as a basis for integrating
built-in predicates and functions often needed in applications. It is shown that the
novel paradigm embeds classical logical satisfiability and standard (finite domain) con-
straint satisfaction problems but seems to provide a more expressive framework from
a knowledge representation point of view. The first steps towards a programming
methodology for the new paradigm are taken by presenting solutions to standard con-
straint satisfaction problems, combinatorial graph problems and planning problems.
An efficient implementation of the paradigm based on domain restricted programs has
been developed. This is an extension of a previous implementation of the stable model
semantics, the Smodels system, and is publicly available. It contains, e.g., built-in
integer arithmetic integrated to stable model computation. The implementation is
described briefly and some test results illustrating the current level of performance
are reported.

1 Introduction

We put forward logic programs with the stable model semantics (LPgn) as an interesting
constraint programming paradigm. The goal is to bring advantages of logic programming
based knowledge representation techniques to constraint programming. These techniques

*This is an extended version of a paper presented at the Workshop on Computational Aspects of
Nonmonotonic Reasoning, Trento, Italy, May 30-June 1, 1998. The work has been supported by the
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seem particularly useful in dynamic domains (such as planning) where, e.g., the frame
problem and the qualification problem emerge. The underlying idea in this paradigm is
to interpret the rules of a program as constraints on a solution set for the program. A
solution set is a set of atoms and a logic program rule of the form

A<+ By,...,Bpy.not Cy,...,not Cp (1)
is seen as a constraint on this set stating that if By, ..., By, are in the solution set and none
of Cy,...,C, are included, then A must be included in the set. A very natural definition

for the solution sets is provided by stable models [17] which form one of the leading declar-
ative semantics of logic programs. However, a logic programming system supporting the
constraint interpretation of rules is very different from typical logic programming systems,
such as Prolog implementations. Given a program the main task of such a system is to
compute solution sets, i.e. stable models, for the program. This differs substantially from
the usual logic programming paradigm which builds on goal-directed backward chaining
query evaluation where the task of the system is to compute for a given query a yes/no
answer or more generally an answer substitution.

The integration of constraints and logic programming has been studied previously mainly
from the point of view of extending Prolog style goal-directed implementation techniques
by allowing, e.g., arithmetic or finite domain constraints in the rules and by integrating
the necessary constraint solvers into a logic programming system. This constraint logic
programming paradigm [21] has been extended to include nonmonotonic reasoning ca-
pabilities such as abduction [22]. However, the constraint logic programming paradigm
differs significantly from our approach where the rules have a declarative semantics and
can be understood themselves as constraints. Hence in our paradigm, rules can be used
directly for expressing constraints without extending the language to allow constraint ex-
pressions in the rules. Recently, similar ideas on employing rules as a methodology for
expressing constraints capturing many kinds of problems such as combinatorial problems,
graph problems and diagnosis, have been presented [10, 11, 15, 5, 6]. Especially close to
our approach is the proposal put forward independently by Marek and Truszczynski [26] to
use stable models as an alternative basis for logic programming where rules are interpreted
as constraints in the same way as in our approach.

The novel constraint programming paradigm based on stable models is becoming increas-
ingly interesting for practical purposes as implementations of the stable model semantics
have advanced significantly in recent years. A number of new methods for computing
stable models have been developed, e.g. [2, 7, 11, 29, 34], and the performance of the
implementations of these methods has progressed rapidly. For example, the Smodels
system [29] has provided quite encouraging results in many application areas. Reasonably
large combinatorial problems (e.g., graph colorings and Hamiltonian circuits) have been
solved using the system [29, 30]. It is able to handle computationally hard propositional
satisfiability problems, e.g., random 3-SAT problems in the phase transition region [12]
having around 250 variables. See, [33], for a comparison of Smodels and Crawford’s
tableau system [12] which is an efficient implementation of the Davis-Putnam method
for deciding propositional satisfiability. The Smodels system has been applied to the
planning domain [13] where it provides comparable and occasionally significantly better
performance than efficient general purpose planners such as Graphplan [3]. There is also
interesting new work on applying Smodels in verification of distributed systems. For
example, it has been used with encouraging experimental results as a “fixed-point engine”
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for implementing efficient model checking algorithms for distributed systems [24] and as
the basic inference engine in a partial-order verification method for Petri nets [20].

In this paper we aim to bring the novel paradigm yet another step closer to practical
applications (i) by proposing a subclass of domain restricted programs as a basis for han-
dling rules with variables and built-in predicates and functions and (ii) by developing
programming methodology for the novel paradigm.

Rules with variables provide a compact and easily maintainable knowledge representation
mechanism which is useful in many applications. However, the most competitive available
methods for computing stable models, e.g. [2, 7, 11, 29, 34], are based on the idea of working
with ground rules. This means that for a program with variables a grounding procedure is
needed for computing a grounded program, i.e. a set of ground instances of the program,
which is sound and complete in the sense that the grounded program has exactly the
same stable models as the original program with variables. Clearly, implementing the
grounding procedure by generating the whole ground instantiation of the program leads
to unacceptable performance as the size of the ground instantiation can grow very fast.

Some research has already been done on efficient grounding procedures. Cholewinski [9]
studies efficient grounding in the context of default logic. The SLG system developed
by Chen and Warren [7] handles query-answering in the stable model semantics for non-
ground programs in the following way: a query is first evaluated with respect to the well-
founded semantics using SLG resolution (see [8, 32]) which produces a residual program
for the subgoals that are relevant for the query. The residual program can be used for
answering the query with respect to the well-founded semantics. Given some restrictions
on the program, e.g. range restrictedness, the residual program is ground and it can
be used for stable model computations by employing one of the methods working on
ground programs. Combining SLG resolution and methods for ground programs offers an
interesting approach to query-answering in the stable model semantics. Efficient WAM-
based implementations for SLG resolution such as the XSB system [32] make this approach
even more attractive.

For constraint programming the use of SLG resolution is not unproblematic for two rea-
sons. First, in real applications the resulting ground programs might be large, e.g., contain-
ing more than 100 000 rules. This leads to efficiency problems as current implementation
techniques for SLG resolution are not tuned for handling residual programs of this size.
Second, the use of the residual program can lead to unsound results: the stable models
of the residual program do not necessarily correspond to stable models of the original
program [7]. The problem originates from the fact that SLG resolution is query-oriented,
i.e., it works in a backward chaining way starting from an initial query, and the residual
program contains only rules that are relevant for the query in this backward chaining
sense. However, in constraint programming we are looking for a solution that satisfies
all the constraints. In order to guarantee soundness we must choose the initial query for
SLG resolution carefully so that all constraints are covered. Of course, a safe choice is
to consider all predicates in the program but this could lead to performance problems.
Determining an initial query that ensures soundness but is not unnecessarily large might
not be trivial in all cases.

Example 1 Consider a situation where we have a choice between a and b and b leads to a
chain of reasoning that can under some conditions, e.g., depending on other choices, lead

to a conflict. So in a simplified setting we could have a set of rules of the form

a < not b c1 < b,not ¢q
b« not a Cy 1
Cp & Cp—1

¢y ¢ ¢y, not a

When considering queries involving a and b in a backward chaining manner, the rules
on the right hand side are not relevant. So given that we are interested in a and b, we
might conclude that there are two solution sets, one containing @ and one b. However, the
solution set containing b but not a does not satisfy the constraints given by the rules on
the right hand side. Hence, in order to guarantee soundness for SLG resolution we should
include in the initial query some ¢; as well. Sometimes it is quite straightforward to decide
what needs to be included in the initial query but one should be careful not to overlook
any possibility. ]

The soundness problem is avoided in the Smodels system [29] where the grounding pro-
cedure works bottom-up and handles range restricted programs in a sound and complete
way. The grounding procedure seems to generate relatively small ground programs but
does not appear to scale very well when the size of the generated ground program grows.
The dlv system [15] implementing disjunctive stable model semantics has also an intel-
ligent grounding procedure which is sound. The test results in [15] indicate that this
grounder scales better than the original grounder in the Smodels system.

In this paper we propose a practical approach to solving the grounding problem where the
subclass of programs to be handled is restricted. We put forward a subclass of programs,
domain restricted programs, for which it is possible to devise efficient grounding procedures
capable of handling efficiently cases where the resulting ground programs contain hundreds
of thousands of rules and for which the modeling capabilities are still satisfactory for
practical purposes. This subclass provides also a framework where external and built-in
predicates and functions can be straightforwardly integrated into the novel paradigm.

We have implemented a new grounding procedure for the Smodels system based on do-
main restricted programs with non-recursive domain definitions. It works much more effi-
ciently than the original grounder in Smodels because for non-recursive domains ground
instances can be generated using efficient database techniques. The original grounding
procedure in Smodels supports a wider class of programs, range restricted ones, but
the difference does not seem to be significant and, in practice, range restricted rules can
be extended to domain restricted ones with little effort. We start the development of a
programming methodology for the novel constraint programming paradigm by working
through standard examples from constraint satisfaction, combinatorial graph problems
and planning.

The rest of the paper is organized as follows. First we explain the formal underpinnings of
the new paradigm, the stable model semantics. Then we discuss rules with variables and
introduce the class of domain restricted programs which serves as a basis for implementing
efficient grounding procedures and for integrating built-in predicates and functions. We
show that traditional Boolean constraints, i.e. propositional satisfiability, can be embed-
ded in a simple way into logic programs with the stable model semantics (LPgny) and
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argue that from a knowledge representation point of view LPgn is more expressive than
propositional logic. We illustrate the use of LPgn by discussing examples from constraint
satisfaction problems, combinatorial graph problems and planning. Finally we report on
our work on implementing the paradigm and give some experimental results that illus-
trate the current level of efficiency of our implementation. We finish with some concluding
remarks.

2 Stable Model Semantics

In this section we formalize the constraint interpretation of rules by giving a declarative
semantics for the solution sets in terms of stable models [17]. We study first ground
(variable-free) rules, i.e., rules where the atoms are variable-free atomic formulae. In the
next section we show how the semantics generalizes to rules with variables.

The starting point of the declarative semantics for solution sets is the intuitive reading of
a rule of the form (1) as a constraint stating that if all the positive body literals B; are
included in the solution set and for each negative body literal not C; the atom C; is not
included, then the head of the rule A must be included in the solution set. However, this
reading does not capture all the important properties of solutions sets. In particular, it is
desired that solution sets are minimal, i.e., a subset of a solution is no longer a solution.
This means that, e.g., the program consisting of the rule p < p has the empty set as its
unique solution set and that the set {p} is not a valid solution. Nonetheless, minimality is
not enough to capture the intended semantics. This can be seen by considering a program

p&p
q < notp

where {p} and {q} are minimal sets of atoms satisfying the intuitive reading of the rules.
However, the set {p} is somehow circularly justified: p is in the solution because p is in
it! In applications such circularly grounded solutions are often unacceptable and the idea
is to devise a semantics which guarantees both minimality and strong groundedness of
the solutions. This can be achieved by defining solution sets as the stable models of the
program.

The stable model semantics [17] generalizes in an elegant way the minimal model semantics
of definite programs [36] to the case where negative body literals are allowed in the program
rules. For a ground (variable-free) program P, the stable models are defined as follows.
The reduct P of a program P with respect to a set of atoms S is the (definite) program
obtained from P by deleting

(i) each rule that has a negative literal not C in its body with C' € S and

(ii) all negative literals in the bodies of the remaining rules.

The reduct P° can be seen as the set of potentially applicable rules given the stable model
S, i.e., as the rules where the negative body literals are satisfied by the model. Note that in
the reduct the negative body literals of the potentially applicable rules are removed and,
hence, the rules are definite. The idea is to capture minimality and groundedness of a
stable model by requiring that every atom in the model is a consequence of the potentially

applicable rules given the model and every consequence of the potentially applicable rules
is included in the model.

For a definite program P we can define a unique set of consequences CI(P) in various
equivalent ways. We can see the program as a set of inference rules and then CI(P) is
the deductive closure of the rules. On the other hand, a rule can be taken as a (definite)
clause where the head is the positive literal and body literals are the negative literals of
the clause. Then CI(P) is the unique minimal model of the clauses which coincides with
the atomic logical consequences from the clauses.

Example 2 Consider the definite program P

D

q<p
T p,q
t s
S48

Now CI(P) = {p,q,r}. In order to verify this we can consider the program as a set of
inference rules

and then CI(P) = {p,q,r} is the deductive closure of the rules, i.e., the least set of atoms
closed under the rules. The closure can be constructed in a forward chaining manner by
starting from the empty set and including a consequence of a rule to the set if the premises
of the rule are already contained in the set. For example, for the rules corresponding to
the program P, p is included first and then ¢ followed by r. On the other hand, we can
see the program as a set of definite clauses

{P,qV —p,mV —pV =g, tV -rV -s,sV s, )

and CI(P) = {p, q,r} is the unique (subset) minimal model of the clauses. Note that a set
of atoms is the minimal model of a set of definite clauses iff (if and only if) it is the set of
atomic consequences from the clauses. u

Definition 2.1 Let P be a ground (variable-free) program. Then a set of ground atoms
S is a stable model of P iff S = C1(P%).

Hence, the stability of a model means that it can reproduce itself in the sense that it is
the fixed point of the operator T'p(S) = CI(P3).

Example 3 Program P

p < not q,r
q < not p
r < not s

s < not p

www.maharaa.com



has a stable model S = {r,p} because the reduct P of P with respect to S is

p<T
T4

and S = CI(P¥). For instance, S’ = {p, s} is not a stable model of P because the reduct
PS5 is {p < r} and its deductive closure is {} # §’. In fact, P has another stable model

{S1Q}'

On the other hand, the program P’

f' 4 mot f'. f

[«

has no stable models. To see this, assume that P’ has a stable model S. Then f € S. If
f' € S, then the reduct is {f +} and its closure does not include f’. Hence, f' ¢ S but
then the reduct is

fref

[+

whose closure contains f'. However, if we remove the second rule, then the resulting
program has a stable model {}. |

The definition of stable models captures the two key properties of solution sets.

e Stable models are minimal: a proper subset of a stable model is not a stable model.

e Stable models are grounded: each atom in a stable model has a justification in terms
of the program, i.e., it is derivable from the reduct of the program with respect to
the model.

As we saw above, a program can possess multiple stable models or none at all. The
definition of a stable model is non-constructive in the sense that it does not provide any
direct method for constructing a stable model from a program. However, given a candidate
set of atoms it can be checked in linear time whether it is a stable model of a program as
the unique minimal model of a set of definite clauses can be computed in linear time [14]. It
has turned out that the problem of deciding whether a ground program has a stable model
is NP-complete [25]. The techniques for computing stable models for ground programs
have advanced rapidly in recent years and now there are systems capable of computing
stable models for programs with tens of thousands of non-stratified rules.

It should be noticed that unlike models for classical logic stable models have a nonmono-
tonic behavior, i.e., adding new rules can lead to new models. Consider, e.g., the program
P’ in Example 3 which has no stable model. If we add a fact f' <, then the resulting
program has a unique stable model {f, f’}. In fact, stable models are closely related to
other formalizations of nonmonotonic reasoning. Their origins are in Moore’s autoepis-
temic logic [27] and logic programs can be seen as a special case of autoepistemic theories
with the not operator treated as disbelief =L where L is the belief operator of autoepis-
temic logic [17]. Stable models have been shown to correspond to other formalizations of

nonmonotonic reasoning. For example, they coincide with the in and out sets computed
by a justification-based truth maintenance system (TMS) when logic programming rules
are treated as justifications in a TMS [16]. Furthermore, logic program rules can be seen
as default rules in Reiter’s default logic [31] and then stable models correspond to default
extensions [18].

When using the rules as constraints, often integrity constraints, i.e., rules of the form
(—Bl,...,Bm,HOtCI,...,HOtC" (2)

are needed. These kinds of rules are straightforward to encode using ordinary rules.
This can be done, for example, by introducing two new atoms f and f’ and a new rule
f' < not f', f and finally replacing every rule of the form (2) with one having f as its
head. Another approach could be to incorporate the integrity constraints to the semantics
by defining that a set of atoms S is a stable model for a program P (possibly with integrity
constraints) iff S is a stable model for the ordinary rules in P and satisfies the integrity
constraints in P. A set of atoms S satisfies a constraint of the form (2) iff it is not the
case that {By,..., By} C Sand {Cy,...,Cr} NS = 0.

Example 4 Consider the program P in Example 3 extended by two integrity constraints

< not p,s

< r.notq,s

This program has only one stable model {r, p} as the other stable model of P, {s,q}, does
not satisfy the first integrity constraint above. ]

Integrity constraints provide a powerful and simple to use constraint programming tech-
nique for pruning unwanted stable models as they cannot introduce new stable models
but only can eliminate them.

Proposition 2.2 Let P be a program and IC a set of integrity constraints. Then if S is
a stable model of P U IC, then S is a stable model of P.

3 Logic Programs with Variables

In this section we generalize the definition of solution sets (stable models) to programs
with variables. Then we introduce a subclass of programs, domain restricted programs,
as a basis for developing efficient grounding procedures needed by current methods for
computing stable models which work on ground rules. Finally we indicate how this subclass
provides a framework for incorporating external and built-in predicates and functions to
our constraint programming paradigm.

The stable model semantics for ground programs presented in the previous section can be
extended straightforwardly to programs with variables by employing the notion of Her-
brand models. For a program, its Herbrand universe is the set of ground terms constructed
from the constants and functions in the program and its Herbrand base is the set of atomic
ground formulae built from the Herbrand universe and the predicate symbols of the pro-
gram. A Herbrand model is a subset of the Herbrand base. Notice that the Herbrand
base of a finite program is finite iff the program contains no function symbols.
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Definition 3.1 For a non-ground program P, the stable models of P are those of the
ground instantiation Py of P with respect to its Herbrand universe.

Because Py is the set of ground rules obtained from the rules in P by replacing variables in
the rules by ground terms given in the Herbrand universe of P, stable models are Herbrand
models of the program, i.e., subsets of its Herbrand base.

Example 5 In this paper we use a logic programming convention that the terms beginning
with a capital letter are variables. Consider the program P

d(a)
dy(b)

1(c)
$(X,Y,Z) + di(X),do(Y),ds(Z),not d3(X)
s(X, X, X) + di(X)

—
+—
+—

S

Its Herbrand universe is {a, b, ¢} and Herbrand base is
{di(a),d1(b),d1(c),da(a),d2(b),...,s(be,c), s(cec)}.

The ground instantiation of the program with respect to its Herbrand universe has 33
rules

dl(a) <«
dq (b) <~
dl(C) «—
s(a,a,a) + dy(a),ds(a),ds(a),not dz(a)
s(a,a,b di(a),da(a), ds(b), not ds(a)

s(c,c,c) + di(c)

and it has a unique stable model {d; (a), d; (b), di(c), s(a,a,a), s(b,b,b),s(c,c,c)}. |

The role of variables in the new constraint programming approach is different from that
in the usual Prolog style logic programming paradigm where variables stand for arbitrary
terms providing recursive data structures built using function symbols. Here the idea is
to keep the basic decision problems decidable and, thus, to avoid function symbols. The
role of more complicated data structures is played by the stable models.

Hence, we are considering function-free programs whose Herbrand universe is always finite
and thus the ground instantiation of the program is finite, too. Notice, however, that the
ground instantiation can be very large compared to the original program. An upper bound
on the size of the ground instantiation is 7¢” where r is the number of rules and ¢ the
number of constants in the program and v is the upper bound on the number of distinct
variables in any rule of the program. When implementing stable model computation for
programs with variables the size of the ground instantiation may become problematic
because the most competitive available methods for computing stable models, e.g. [2, 7,

11, 29, 34], are based on the idea of working with ground rules. Clearly, the approach where
the whole ground instantiation of the program is computed first and stable models are
computed from the ground instantiation can lead to very big overheads and unacceptable
performance.

Example 6 Consider the program P in Example 5. The ground instantiation of P has
33 rules of which clearly the 27 ground rules related to the fourth rule do not contribute
to the stable models of P. [ |

Next we present a technique for handling the grounding problem in a way which works
fairly efficiently in practice. Our idea is to restrict the class of programs so that a sound
and complete subset of the ground instantiation can be computed efficiently. Soundness
and completeness means that the subset has exactly the same stable models as the whole
ground instantiation (and thus the original program).

We restrict the programs by requiring that every variable in a rule appears in some domain
predicate for which it is easy to determine which of its ground instances are in the stable
models of the original program. If the relevant ground instances of the domain predicates
in a rule are easy to determine, then the relevant ground instances of the rule can be
computed efficiently one rule at a time. In the following we make these ideas more precise.
First we define the class of domain restricted logic programs.

Definition 3.2 A logic program P is domain restricted for a set of predicates D if for
each rule in P it holds that every variable in the rule appears also in a positive body literal
of the rule for which the predicate is from D.

Notice that a domain restricted program is also a range restricted one, i.e., if a variable
appears in a rule it also appears in some positive body literal in the same rule. The extra
condition here is that the positive literal must be a domain predicate from a given set.
For example, the program P in Example 5 is domain restricted for {d;, dy,d3} but not for

{d],dz}.

Definition 3.3 Let P be a logic program that is domain restricted with respect to D and

D a set of ground instances of predicates in D. We define the program Py, as the set of
ground instances of the rules in P such that each positive body literal with a predicate from
D belongs to D.

Example 7 Consider the program P in Example 5 and set D = {d;,ds,ds}. For D=
{d1(a), d2(a), ds(a), d3(b)}, Pp is

S(aa a, b) <~ dl ((l), d2 ((l), d3(b)' not d3 ((1)
s(a,a,a) < di(a)

10
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The next problem is to determine when a set of ground instances D of the domain pred-
icates is sufficient in the sense that P and Pj have exactly the same stable models. For
that we define a notion of completeness.

Definition 3.4 Let P be a logic program that is domain restricted with respect to D and
D a set of ground instances of predicates in D. Then D is complete for P iff for each
ground instance d of a predicate d € D it holds that (i) if d is in some stable model of P,

then d € D and (i) if d is in some stable model of Py, then deD.
A complete set of ground instances is sufficient as shown by the following theorem.

Theorem 3.5 Let P be a domain restricted logic program with respect to D and Da
subset of ground instances of predicates in D with respect to the Herbrand universe of P
such that D is complete for P. Then P and Pj have the same stable models.

Proof. Let Py be the ground instantiation of P with respect to its Herbrand universe
and let S be a stable model of P, i.e., S = CI(Pj}). We show that S is a stable model of
Py, ie., that § = Cl(Pg) holds by establishing

CI(Pj;) = CI(PZ). (3)

(2) Clearly, P, C Py, hence P§ C Py and thus CI(P§) C CI(Pg) by the monotonicity
of Cl. (C) Let a € CI(P). Taking the rules in P; as inference rules, this means that
there is a proof ag,ay,...,a, = a where for each a;, there is a rule a; < by, ..., b, € PFS,
such that each b; is some a; with j < i. We show that for alli =0,1,...,n, a; € Cl(Pg)
by induction on i. Clearly, ag is a fact in the program P which cannot contain variables
as the program is domain restricted. Hence, ag +-€ Pp and ag € Cl(P‘g). Assume that
there is a proof ag,ay,...,a;. Hence, there is a rule r of the form a; < by,...,b, € Pg
such that each b; is some a; with j < i. By the induction hypothesis, each b, € Cl(Pg).
We show that 7 € P2 holds which implies a; € CI(PZ). As r € Pjj, there is rule ' € P
such that r is obtained from 7’ by replacing the variables of r’ by ground terms and then
removing the negative body literals. For each domain predicate d in r’, there is a ground
instance b; in 7. But as each such ground instance b; belongs to the stable model S of
P, then by the property (i) for a complete set of ground instances ﬁ, b; € D and, hence,
7 € P5. Thus, we have shown that a € CI(P;;) implies a € CL(P$). Hence, (3) holds.

Similarly, we can show that a stable model of P, is a stable model of P by using the
property (ii) of a complete set of ground instances. O

Example 8 It is not very hard to come up with complete sets of ground instances of
the domain predicates under some restrictions on the program. Below we provide a few
examples:

e If a program P is range restricted, then we can take D to be the set consisting of
every predicate appearing in a positive body literal and D to be the set including all
their ground instances. Now Pp; is the same as the ground instantiation of P and is
clearly complete.

11

e Let a program P be domain restricted with respect to a set D of predicates which
appear in the head of a rule in P only if the rule is a fact. Now we can take as the
set of ground instances D the set of facts for the predicates from D in P. This set
is complete for P.

e Let a program P be domain restricted with respect to a set of predicates D which
have stratified [1] definitions in P depending only on predicates in D. Then a
complete set of ground instances D is given by the unique stable model of the rules
relevant to the predicates from D in P.

The idea is to employ the notion of domain restricted programs and Theorem 3.5 to find
a subclass of programs with satisfactory expressive power for applications such that the
grounding problem can still be solved efficiently. Notice that when a complete set of ground
instances D has been computed, then a sufficient set of ground instances of the program,
Pj,, can be produced very efficiently by considering one rule of the original program at a
time. Hence, the key question is to find a subclass of programs for which a complete set
of ground instances can be computed efficiently and the resulting set of ground rules is
still of manageable size.

The last alternative in the example above, i.e., domain restricted programs with stratified
domains, is a promising basis for handling the grounding problem. Tt allows an expressive
language for defining domain predicates, i.e., that of stratified programs, and it facilitates
the computation of the ground program as the domain predicates can be evaluated sepa-
rate from the rest of the program one stratum at a time starting from the lowest strata.
Furthermore, with stratified domain predicates we can tighten the definition of the re-
sulting ground program Pp, and exploit also the domain predicates in the negative body
literals. This means that without loosing completeness we can limit the ground instances
in Pp to those where each positive body literal with a predicate from D belongs to D
and where for each negative body literal not C with a predicate from D, the atom C is not
included in D. These properties make this subclass of programs more attractive than,
e.g., range restricted programs. This is because range restricted programs do not seem
to share such computational advantages but do not offer much more modeling power to
compensate the added complexity of the grounding problem. Note that it can be efficiently
checked whether a program is domain restricted with stratified domains. This can be done
by using the dependency graph of the program [1] to determine the set of all predicates
D defined in a stratified way and then checking whether the program is domain restricted
for this set D.

Stratified domain definitions allow also recursive definitions which means that determining
the complete set of ground instances for the domain predicates involves recursive query
evaluation techniques. It is not straightforward to obtain good performance when eval-
uating recursive rules and further complications arise as we aim to incorporate built-in
predicates and functions in the domain definitions.

In order to circumvent these difficulties we are putting forward a subclass that we call
domain restricted programs with non-recursive domains. This is a subclass of programs
with stratified domains where the domain predicates have stratified but non-recursive
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definitions in the program depending only on other domain predicates. This means that,
e.g., the transitive closure tc of a domain predicate rel given by the rules

te(X,Y) + rel(X,Y)
te(X,Y) + rel(X,Z),tc(Z,Y)

cannot serve as a further domain predicate in this restricted subclass although it can
when general stratified domains are allowed. Notice that the second rule is not domain
restricted as tc cannot act as a domain predicate. In order to transform the rule to a
domain restricted one, a new domain predicate for the variable Y needs to be added. A
straightforward way to define such a domain predicate d is to use a rule d(V) < rel(X,Y).

This subclass is an interesting compromise: (i) Non-recursive domain predicates allow a
fair amount of modeling power corresponding to view definitions in relational databases.
Hence, new domain predicates can be defined from the basic ones using, e.g., unions,
intersections, differences, projections and joins. (ii) A complete set of ground instances
for such a set of domain predicates can be computed efficiently using database techniques
by evaluating the predicates one stratum at a time using database operations starting
from the lowest strata. We demonstrate the expressivity of domain restricted programs
with non-recursive domains by using this subclass in all the examples for the rest of the
paper.

We end this section by pointing out that the notion of domain restricted programs with
non-recursive domains provides a simple framework where different kinds of external and
built-in predicates can be easily incorporated to rule bodies. This is because difficult se-
mantical issues related to floundering are avoided and the evaluation of built-in predicates
and functions is straightforward to integrate into the database techniques for computing
the complete set of ground instances for the domain predicates. The idea is that we allow
in the rule bodies predicates and functions that have their definitions given externally, e.g.,
in a relational database or as a built-in procedure implemented in some other programming
language and use them to define further domain predicates.

Example 9 We illustrate the possibilities by an example of using built-in predicates and
functions for integers. For example, we could have a built-in predicate minus(X,Y, Z) cor-
responding to the set of facts minus(z,y, z) where z,y, z are integers such that z = z —y.
There is no need for this set of facts to be represented explicitly in the program and it
could be implemented as an external procedure in some other programming language.
For keeping the semantics clear it is enough to avoid floundering, i.e., a call to an ex-
ternal procedure where the parameters have uninitialized values. This can happen when
an externally defined predicate has a variable as an argument and the range of ground
terms over which the variable can vary is not clear. Domain restriction eliminates such a
possibility.

Conceptually there is no problem in incorporating also built-in functions in the body
literals of rules as long as we avoid floundering. Hence, we could have a built-in function
minus(X,Y) which we could use in the rule body. In what follows we use the usual infix
notation for arithmetic functions.

The following shorthand is often handy for representing basic domains. We assume that
a rule d(n..m) « stands for a set of facts d(n) <,d(n + 1) +,...,d(m) « if n,m are
integers such that n < m.
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Using these kinds of constructions it is then fairly easy to represent many interesting
problems. We illustrate the ideas by a program that defines a (domain) predicate grid
modeling grid graphs where nodes are pairs of integers and ((4,7), (¢',5')) is an edge iff
li =i+ —71=1

So we are given some basic domain predicates

zdim(1..z) «
ydim(1..y) «

which represent the dimensions of the grid graph where z and y are integers with z,y > 1.
We define the predicate grid(I,J. I', J') such that ((I.J),(I',J')) is an edge in the grid
graph with dimension z,y as follows:

grid(I, J,I',.7") « xdim(I),ydim(.J), zdim(I"), ydim(.J'),
abs(I — I') +abs(J — J') = 1.

where abs is a built-in function such that abs(z) = |z|. Tt should be noticed that external
predicates and functions can be used for defining new domain predicates in a non-recursive
fashion without any semantical difficulties as long as the program remains domain re-
stricted. For example, the predicate grid can be taken as a new non-recursively defined
domain predicate, although it depends not only on previously defined domain predicates
zdim, ydim but also on built-in functions and predicates ‘—’, ‘+’, ‘abs’, ‘=". Hence, it can
be used for defining further domain predicates. For example, we could code a node (I,.J)
as a single integer X = (I — 1) xy + J and define a corresponding graph for these nodes
in terms of new domain predicates edge and vertex:

¢

edge(X,Y) « grid(I,J,I',J),X =T —-1)xy+JY =(I"-1)sxy+.J
vertex(X) < edge(X,Y)
verter(Y) <« edge(X,Y)

4 Relation to Propositional Satisfiability

Stable models are sets of atoms similar to propositional models. However, there are two
significant differences. Stable models are minimal and grounded. We show that despite the
differences propositional satisfiability (SAT) can be easily reduced to LPgnm by employing
a simple local mapping. Then we argue that a similar local mapping is not possible in the
reverse direction implying that LPgn is more expressive than propositional logic from a
knowledge representation point of view.

SAT can be mapped to LPgn by constructing a ground logic program Trgat(S) for a set
of clauses S, for example, in the following straightforward way. (i) We introduce for each
atom a appearing in S two atoms a and a and include two rules

a < not a

a < not a
(ii) For each clause in S, we introduce a new atom ¢ and include one rule for each literal

[ in the clause as follows: if [ is a positive atom a, take the rule ¢ < a and if [ is the
negation of an atom a, add ¢ < @ and (iii) finally we include the rule + not c.

14
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Example 10 For a set of clauses
S ={aV-b,—aVhb}

the translation Trgar(S) contains the rules

a < not a cL+a Cy < a
a < not a cl(—lA; co b
b+ not b < not ¢ < not ¢y
b« not b

You et al. [38] present a reduction from propositional satisfiability to logic programs which
is based on similar ideas as the mapping above but they use as the target language ex-
tended logic programs (with classical negation) and study special semantics developed for
extended programs instead of the stable model semantics.

Proposition 4.1 A set of clauses S has a model iff Trgar(S) has a stable model.

The proposition shows that propositional satisfiability can be reduced to the problem
of finding a stable model. Note that a stable model of Trgay(S) provides directly a
propositional model for the clauses S where atoms in the stable model are assigned true
and the rest of the atoms false (atoms a for which a is in the stable model).

Although it is clear from the complexity results that the problem of finding a stable
model can be reduced in polynomial time to a propositional satisfiability problem (as
both are NP-complete problems), it is not obvious whether the two approaches are equally
expressive from a knowledge representation point of view. In fact, there seems to be no
way of mapping LPgn to SAT in a similar local modular fashion as we embedded SAT to
LPgsn above where small local changes in the input clauses lead to small local changes in
the corresponding logic program. Notice that our translation from SAT to LPgp is very
modular as each clause can be translated to a set of rules independently of other clauses.
We can show that such a mapping in the reverse direction is not possible even under mild
assumptions on the notion of modularity. Consider, e.g., a notion of modularity where
a mapping T(-) from logic programs to propositional clauses is said to be modular if for
any program P, for each set of atomic facts ¥, P U F has a stable model iff F U T(P)
is satisfiable. The intuition here is that for a modular mapping, adding an atom to the
program should lead to a local change not involving the translation of the rest of the
program.

Proposition 4.2 There is no modular mapping from logic programs to clauses.

Proof. Consider a program P = {p < not p}. Assume that T(-) is a modular mapping.
Then as P has no stable models, T(P) is unsatisfiable. But then {p}UT(P) is unsatisfiable.
This implies that P U {p «} has no stable model which is clearly not the case. Hence, no
modular mapping exists. O
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We finish the section by discussing the implications of the results to the relative knowl-
edge representation capabilities of propositional logic and LPgn. The modular mapping
from SAT to LPgn indicates that whenever there is a natural representation of (some
part of) a domain using propositional logic, this can be used almost directly in the frame-
work of LPgn with small overhead through, e.g., the mapping above. Notice that the
overhead caused by the introduction of an extra atom a for each propositional atom a is
not significant because the state of the art implementations of stable model computation
propagate the rules efficiently in both directions and can determine the other atom im-
mediately whenever one of a,a becomes determined. Hence, the structure of the search
space for propositional models of a set of clauses is similar to that for stable models of the
corresponding set of rules. Also maintaining such a representation as rules is comparable
to maintenance of the propositional representation because small changes in the clausal
representation lead to small local changes in the corresponding rule set.

The last proposition implies that there could be situations having a natural representation
in LPgnm but not when employing propositional logic in the sense that even simple updates
like adding a new fact could lead to non-local changes in the propositional representation
of the situation. In particular, this seems to hold in dynamic situations where, e.g., the
frame problem and the qualification problem have to be addressed. Hence, the results in
this section seem to strongly suggest that LPsm provides a more expressive knowledge
representation framework than classical propositional logic.

Another significant difference between SAT and LPgn is in the structure of the search
spaces where the minimality and groundedness properties of stable models appear to
provide interesting computational advantages. We return to this point in Section 8.

5 Relation to Constraint Satisfaction Problems

In the previous section we showed that Boolean constraints can be embedded into LP gy
using a simple local translation but that a similar local translation in the reverse direction is
not possible. More general forms of constraints seem to have similar problems in capturing
stable models but the other direction is still fairly straightforward. We demonstrate this
by outlining a simple local mapping of constraint satisfaction problems (CSPs) to LPgm.
Then we discuss some standard problems from the CSP literature.

A CSP consists of a set of variables with finite domains and a set of constraints. Each
constraint specifies a set of allowed combinations of variables and values. A solution to the
CSP is an assignment of values to variables such that each variable has exactly one value
from its domain and all constraints are satisfied, i.e., for each constraint the assignment
agrees with an allowed combination in the constraint. It is straightforward to represent
such a problem using rules.

e For each domain value ¢ in the CSP we adopt a constant c.

e For each domain d in the CSP we adopt a one-place predicate d and a set of facts
d(c1) <. ..,d(cy) < where ¢y, ..., c, are the possible values of the domain d.

e For each variable v with the domain d in the CSP we adopt one-place predicates v
and ov and two rules

v(X) + d(X),not ov(X)
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ov(X) + d(X),d(Y),v(Y), X #Y integrity constraint stating that a pigeon cannot be in two holes and the following
two rules that a pigeon must be in at least one hole. Note that we employ a new
“defined” predicate hashole for representing the constraint. Such defined predicates
appearing in integrity constraints do not introduce new stable models. The last rule
says that there cannot be two pigeons in the same hole. The resulting program has
a stable model iff the pigeon problem has a solution and a solution can be read from

where the predicate ov(X) models the fact that the variable v has some other value
than X.

e For each constraint co giving a set of allowed value combinations for a set of variables

v1,...,v; we take the fact constraint(co) < and for each allowed value combination I T . R
m=ci,...vj = ¢ arule the stable model S as follows: pos(p,h) € S iff pigeon p is in hole h in the solution.
' Queens: Place n queens on an n x n board so that no queen checks against any other
sat(co) « vi(er),- .., vj(c;) queen.
and finally a rule This problem can be handled using the following program
« constraint(C),not sat(C).
. . ) q(X,Y) « d(X),d(Y), not negq(X,Y)
stating that each constraint C must be satisfied.
negq(X,Y) « d(X),d(Y),not ¢(X,Y)
! !
Hence, a CSP can be represented in LPgn in a very straightforward and easily main- < d(X)’d(Y)’d(X’)’q(X Y).q(X,Y), X’ 7 X
tainable way. For example, adding a new domain value ¢ to the domain d can be done «d(X),d(Y),d(Y"),q(X,Y),q(X, V"), V' £V
just by adding the corresponding fact d(c) <. Sometimes constraints in a CSP are given —d(X),d(Y),d(X"),d(Y"),q(X,Y),q(X",Y"), X #X".Y #Y',
in terms of disallowed combinations of values to variables. These kinds of constraints abs(X — X') = abs(Y —Y")

are also straightforward to represent with rules. For example, a disallowed combination

. + d(X),not hasq(X)
vy = c1,...v; = ¢; can be captured with a rule

hasq(X) < d(X),d(Y),q(X,Y)

< oi(er), .. v5(e). . . . - . .
where the domain predicate d provides the dimension of the board, i.e., d(1..n) « is
included in the program. The idea is that ¢(z, y) gives a legal position of a queen and

5.1 Examples it is again modeled as a ‘two-valued’ atom using the first two rules. The integrity
constraint based technique is used for eliminating non-valid solutions. The third
Constraints often have a very natural representation directly as logic program rules. We rule says that there cannot be two queens in the same row, the fourth eliminates two
illustrate this using a few standard examples from the CSP literature. queens in the same column and the fifth two queens in the same diagonal. The last
two rules say that there must be a queen in each column. Notice that in a problem
Pigeon: Put N pigeons into M holes so that there is at most one pigeon in a hole. like this (integer) arithmetic enables very compact representation of constraints as

exemplified by the fifth rule. The resulting program has a stable model iff the queens

Thi 1 I ith the followi
is problem can be solved with the following program problem has a solution and a solution can be read from the stable model S as follows:

pos(P, H) « pigeon(P), hole(H), not negpos(P, H) q(z,y) € S iff (z,y) is a legal position for a queen on the board.

negpos(P, H) « pigeon(P), hole(H), not pos(P, H) Schur: Partition the integers N = {1,2,...,n} into b boxes such that for any z,y € N, (i)
< pigeon(P), hole(H), hole(H'), pos(P,H),pos(P,H'), H # H' z and 2z are in different boxes and (ii) if z and y are in the same box, then z +y is
+ pigeon(P),not hashole(P) in a different box.

hashole(P) « pigeon(P), hole(H),pos(P, H) This problem can be solved using the following program

+ pigeon(P), pigeon(P'), hole(H),pos(P, H),pos(P',H), P # P' pos(X, B) « n(X), b(B), not negpos(X, B)

where the domain predicates hole and pigeon give the available holes and pigeons. "EQPOS(X B) + n(X),b(B),not pos(X, B)

The idea is that pos(p, h) gives a legal position of pigeon p in hole h. For each hole n(X),b(B),b(B'),pos(X, B),pos(X,B'), B # B’

h and pigeon p, pos(p, h) is modeled as a ‘two-valued’ atom, i.e., every stable model n(X), not hasboz(X)

contains either it or its ‘complement’ negpos(p, h). For representing the necessary hasboz( X WB X.B

constraints we use the technique based on integrity constraints for eliminating stable asboz(X) < n(X), b(B), pos( )

models not corresponding to valid assignments of pigeons to holes as follows. The n(X),b(B),pos(X, B),pos(2 x X, B)

first two rules establish the two-valued character of pos and provide the candidate n(X),n(Y),b(B),pos(X, B).pos(Y, B),pos(X + Y, B)

stable models. The rest of the rules prune this set of models. The third rule is an
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where the set of integers is given by the domain predicate n, the boxes by the
predicate b and pos(z,y) means that the integer z can be put in a box y. Again we
use a combination of the ‘two-valued’ modeling technique and integrity constraints
where the first five rules specify the two-valued character of pos and state that each
number can be in exactly one box. The last two rules correspond directly to the
conditions (i) and (ii) above.

Often combinatorial problems and constraint satisfaction problems have a large
amount of symmetric solutions. By eliminating symmetries the search space of such
a problem can be pruned considerably. In LPgp it is possible to do this declaratively
without modifying the underlying search procedure for stable models by adding new
rules. We illustrate this with the program above that allows symmetric solutions
where the boxes are permuted. These can be eliminated by assuming a linear order
for the boxes (naming them by integers) and by using the integrity constraint based
technique leading to the following rules saying that for each integer z we should use
the smallest available box, i.e., a box for which no smaller box is free of integers
smaller than z.

<« n(X),b(B),pos(X,B),b(B'), B' < B,not occupied(X, B')
occupied(X,B) < n(X),b(B),n(Y),Y < X,pos(Y, B)

Here occupied(X, B) models the fact that there is some integer Y < X occupying
the box B.

6 Combinatorial Graph Problems

In this section we demonstrate the applicability of LPgy to solving combinatorial graph
problems by considering two typical problems: colorability and Hamiltonian circuits. The
idea is to illustrate the knowledge representation capabilities of rules and show that LPgn
provides a compact and easily maintainable approach to describing such problems. Main-
tainability means that the rules specifying the correct solutions are independent of the
graph under consideration and, thus, the graph can be changed without changing other
parts of the program and similarly for important parameters for the problems, e.g., the
number of available colors, which can be altered without modifying any other part of the
program.

K-colorability

First consider the k-colorability problem, i.e., the problem of finding an assignment of
one of k colors to each vertex of a graph such that vertices connected with an arc do not
have the same color. This problem can be mapped to a stable model finding problem as
follows. Assume that we have a database giving a graph in terms of atomic facts of the
form vertex(v) < and arc(v,u) < and the available colors as facts col(c) «. Then take
the program with the rules below.

color(V, C) + vertex(V), col(C),not othercolor(V,C)
othercolor(V, C) « vertex(V), col(C), col(D),C # D, color(V, D)
«— arc(V,U), col(C), color(V, C), color(U, C)
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he(V,U) « arc(V,U), not otherroute(V,U)

otherroute(V,U) « arc(V,U),arc(V,W),he(V,W), U # W
otherroute(V,U) < arc(V.U),arc(W,U), he(W,U),V # W
reached(U) < arc(V,U), he(V,U), reached(V ), not initialnode(V')
reached(U) < arc(V,U), he(V,U), initialnode(V')

« vertez(V),not reached(V')

Figure 1: A program for Hamiltonian circuits.

The first two rules demonstrate a knowledge representation technique based on rules with
exceptions. The first rule says that vertex V has color C' unless there is some exception
(othercolor) and the second rule specifies the exceptions. This provides the candidate
solutions and the third rule eliminates those not corresponding to legal colorings. The
program has a stable model iff there is a k-coloring of the graph. Note that the mapping
from colorability to LPgp is constructive in the sense that a k-coloring of the graph is
directly obtained from a stable model by taking the facts of the form color(v,c) that are
true in the model.

Hamiltonian circuits

As an example of a problem which is not straightforward to map to a constraint satisfaction
problem but which has a natural coding in LPgm we consider the Hamiltonian circuit
problem, i.e., the problem of finding a path in a graph that visits each vertex of the graph
exactly once and returns to the starting vertex. Again assume that we have a database
giving a graph in terms of atomic facts of the form vertez(v) <+ and arc(v,u) <. We
add to the facts the rules in Figure 1 and take one of the vertices v as the starting vertex
(imitialnode(v) < is added). The idea is that a fact he(v, u) holds if the arc (v, u) belongs
to the Hamiltonian circuit. The first three rules ensure that for each node exactly one
incoming and outgoing arc belong to the path. Here we employ rules with exceptions again.
The first rule says that an arc belongs to the circuit if there is no exception, i.e., no other
route between the two nodes. The last three rules state that the path forms a cycle which
visits all nodes and returns to the initial node. By exploiting the groundedness property
of stable models the notion of a path forming a cycle can be captured in a compact way
using a defined predicate reached and an integrity constraint. This leads to an easily
maintainable representation where, e.g., the graph can be changed without changing the
rules describing the conditions on the circuit. The resulting program has a stable model iff
the graph has a Hamiltonian circuit. Note that the mapping from Hamiltonian circuits to
LPgn is constructive in the sense that a circuit is directly obtained from a stable model
by taking the facts of the form hc¢(v,u) in the model.

7 Planning

Planning provides a particularly interesting application area for nonmonotonic reasoning
systems such as implementations of LPgn because this is a domain from which some
of the main motivation for developing nonmonotonic formalisms originates. In planning
difficult issues related to reasoning about action and change such as the frame problem have
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to be addressed and the expressivity of the nonmonotonic formalisms can be utilized to
overcome some of the difficulties. We illustrate with a blocks world example how planning
problems can be mapped to logic programming rules. For more detailed accounts, we refer
the reader, e.g., to [19, 13].

In the blocks world we are given initial conditions concerning blocks on a table stating
how they are stacked on top of each other and similar goal conditions. The aim is to
generate a plan, i.e., a sequence of move operations starting from the initial configuration
and leading to a configuration where the goal conditions are satisfied.

Consider the following example. In the initial configuration we have three blocks a,b, ¢
such that b and ¢ are on the table and « is on top of b. The goal conditions are that ¢ is
on a and b is on ¢. A possible solution for this planning problem is a sequence of moves
where a is moved onto the table, ¢ is moved onto a and finally b is moved onto c.

The idea is to map a planning problem to a logic program such that stable models cor-
respond to valid plans. For formalizing blocks world planning we use situations where
facts hold. Planning is PSPACE-complete [4] and one way of restricting the problem to
an NP-complete one is to bound the length of the plan. Hence, we assume that we have
a limited number of situations tg, ..., ¢, where ty is the initial situation and the available
situations are given using facts of the form time(t;) <. A predicate nextstate specifies
the order of the situations, i.e., for each i = 0,...,n — 1, nextstate(t;+1,t;) holds. We
employ predicates on(X,Y,T) (X is on Y in the situation 7') and moveop(X,Y,T) (X is
moved onto Y in the situation T') and assume that the available blocks are specified using
facts of the form block(b) «+.

The initial conditions are straightforward to formalize. For instance, for the example above
it is sufficient to include the facts

on(a, b, ty) <
on(b, table, ty) «
on(c,table, ty) <
In order to capture the goal conditions we employ a predicate goal(T) which holds in any

situation 7" where the goal conditions have been reached. For the example above, the
resulting rule is

goal(T) + time(T),
on(b,e,T),
on(c,a,T)
The idea is that a valid plan corresponds to a stable model where the goal condition has
been achieved in some available situation. This is captured by the following two rules.
The third rule ensures that if predicate goal(T') holds in a situation, then it holds also in
all subsequent situations. This is employed later in the operator descriptions.
goal < time(T), goal (T)
<+ not goal
goal(Ty) + nextstate(Ty, T), goal(Ty)

In order to formalize the preconditions and effects of the move operator we use the following
rules. The first rule specifies the preconditions and uses the technique based on exceptions.

An instance of the move operator is applicable if there are no exceptions, i.e., the object
to be moved and the destination are not covered and the move operator instance is not
explicit blocked (blocked_move). The exceptions are then listed below. The effect of the
move operator can be stated directly as given in the second rule.

moveop(X,Y,T) < time(T),
block(X),
object(Y),
X #Y,
on_something(X,T),
available(Y,T),
not covered(X,T),
not covered(Y,T),
not blocked_move(X,Y,T)
on(X,Y,Ty) < block(X),
object(Y),
neztstate(Ty, T}
moveop(X,Y, Ty
on_something(X,T) < block(X),
object(Z),
time(T),
on(X,Z,T)
available(table,T) < time(T)

available(X,T) « block(X),
time(T),
on_something(X,T)
covered(X,T) + block(Z),
block(X),
time(T),
on(Z,X,T)

):
)

object(table) +
object(X) « block(X)

It is enough to provide a frame aziom only for the predicate on and this can be stated
compactly as a rule with exceptions where the exceptional situations are captured using
the predicate moving.

on(X,Y,Ty) < nextstate(Ty,T1),
block(X),
object(Y),
on(X,Y,T}),
not moving(X, Ty)
moving(X,T) « time(T),
block(X),
object(Y),
moveop(X,Y,T)
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What remains to be stated are the blocking conditions for the moves. The first set of
conditions covers the cases where the goal has been reached or the instance of the move
operator has not been chosen.

blocked_move(X,Y,T) < block(X),
object(Y),
time(T)
goal(T)
blocked_move(X,Y,T) + time(T),
block(X),
object(Y),
not moveop(X,Y,T)

The second set depends on whether concurrency is allowed, i.e., whether more than one
operator can be applied in a situation. We allow this and block only the operator instances
whose effects are in conflict, i.e., which cannot be arbitrary interleaved. Computationally
this seems advantageous as it decreases search space explosion due to interleavings of
independent operators in linear planning.

blocked_move(X,Y,T) «+ block(X),
object(Y),
object(Z)
time(T),
moveop(X, Z,T),
Y 4 2.

blocked_move(X,Y,T) <+ block(X),
object(Y),
time(T),
moving(Y,T)

blocked_move(X,Y,T) + block(X),
block(Y),
block(Z),
time(T),
moveop(Z,Y,T),
X+42

3

This kind of a constraint formulation of planning allows flexible integration of different
kinds of pruning rules. For example, we can exclude a move from the table back to the
table or a move on top of something and then immediately to the table:

« block(X),
time(T),
moveop(X, table, T),
on(X,table,T)

+ nextstate(Ty, T),
block(X),
object(Y),
moveop(X,Y,T}),
moveop(X, table, Ty)

For a program constructed like this it holds that the program has a stable model iff there
is a sequence of moves from the initial configuration to a situation satisfying the goal
conditions that can be executed concurrently in at most n steps. Note that a stable model
provides directly a valid plan with the facts of the form moveop(z,y,t) true in the model.
A plan can be built just by arranging the facts in the order given by the situation argument
t. A valid sequential plan is obtained from this by arranging facts with the same situation
argument in any linear order.

The expressivity of logic program rules is exploited, e.g., in representing frame axioms
and blocking conditions. A very compact representation is obtained with nice modular-
ity properties, e.g., updating the representation with new blocks or operators is fairly
straightforward.

8 Implementation

There is a C++ implementation of LPgu called Smodels [29, 30] which implements the
stable model semantics for range restricted function-free normal programs. Tt includes two
modules: (i) smodels which implements LPgn for ground programs and (ii) parse which
is the grounding procedure for smodels. We have developed a new grounding procedure,
lparse, for the Smodels system which is based on domain restricted programs with
non-recursive domains. The user does not need to explicate the domain predicates but
lparse detects them automatically by using the dependency graph for the program to find
all non-recursively defined predicates. The ground instances of these predicates are then
computed efficiently using database techniques. The more restricted class of programs
handled by 1parse enables it to work substantially more efficiently than parse because
of the use of database techniques and because it is able to generate the ground instances
of a rule independently of other rules. Furthermore, it includes built-in predicates and
functions for integer arithmetic. More details about the implementation techniques of
1parse and its performance compared to parse and the dlv system can be found in [35].

The implementation of the stable model semantics for ground programs in the Smodels
system is based on bottom-up backtracking search where the search space for stable models
is pruned efficiently by exploiting the minimality and groundedness properties of stable
models. This is based on an approximation technique for stable models which is closely
related to the well-founded semantics [37]. The same approximation technique is employed
in a powerful dynamic search heuristics.

One of the underlying ideas in the implementation is that stable models are characterized in
terms of their so-called full sets, i.e., their complements with respect to the negative atoms
in the program (negative atoms in the program for which the corresponding positive atoms
are not included in the stable model) [28, 29]. This characterization, which follows from the
minimality and groundedness properties of stable models, implies that only negative body
literals contribute to the size of the potential search space and not all atoms in the program.
Hence, it is possible to employ new defined atoms without compromising efficiency, e.g.,
in order to achieve a clearer or more succinct representation of a problem. By the full
set characterization it is clear that atoms which appear only positively in the bodies do
not increase the potential search space but this seems to hold also for other atoms, e.g.,
having stratified definitions. This is different from, e.g., propositional logic where each
new atom potentially doubles the initial search space for models which is why the use
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of new defined atoms is typically avoided when applying propositional logic. Hence, it is
conceivable that the possibility to use new defined atoms without computational overhead
in LPgm can lead to compact representations with attractive computational properties
comparing favorable to formulations in classical logic. However, it is hard to compare
representations of the same problem in different frameworks and more work is needed to

determine how much can be gained in actual applications. Table 1: Experimental results on standard constraint satisfaction problems.
Problem Solutions  Time (s)
One of the advantages of the implementation method is that it has linear space require- Pigeon 6/6 720 0.8
ments. This makes it possible to apply the stable model semantics also in areas where Pigeon 8/7 0 4.6
resulting programs are highly non-stratified and can possess a large number of stable Pigeon 9/8 0 42.3
models. See [29, 30, 33], for more detailed information on the implementation techniques. Queens 8 92 91
Smodels has turned out to be significantly more efficient than other recent implementa- Queens 10 724 39.1
tions of the stable model semantics (e.g. [2, 7, 34, 11]) and it is the first system that can Queens 16 first 13.3
handle highly non-stratified programs with tens of thousands of ground rules. Queens 18 first 103
Queens 20 first 368
Availability Schur 3/13 3 0.15
Schur 3/14 0 0.13
The Smodels system is freely available at http://www.tcs.hut.fi/pub/smodels/ . Schur 4/42 first 4.9
Documentation and an extensive set of test cases can be obtained from the same location. Schur 4/43 first 5.2
In order to make use of the system you will need a C++ compiler and other standard Schur 4/44 first 865
tools such as make and tar. The system has been developed under Linux and should work Schur 4/44 273 4650
as is on any platform having the appropriate GNU tools installed. Schur 4/45 0 6110

9 Experimental Results

In order to provide a flavor of the performance of the system we report some results
on CSPs, combinatorial graph problems and blocks world planning using the domain
restricted programs described in previous sections. Table 1 contains results on standard

CSPs.
Table 2 presents results on combinatorial graph problems. As test graphs we have used
random planar graphs which are constructed by Delaunay triangulation of randomly in- Table 2: Experimental results on combinatorial graph problems.
serted points in a plane. Here the plane function found in the Stanford GraphBase [23] Problem Graph Solutions Time (s)
has been used. For example, p1000 means a random planar graph with 1000 vertices. 3-col p1000 0 3.3
3-col p3000 0 10.1

Table 3 contains results on experiments involving challenging blocks world examples. We

consider three test cases: 3-col p6000 0 20.3

4-col p100 first 1.5

e large.c is a 15 blocks problem which is already difficult for advanced domain inde- 4-col p300 first 13.1

pendent planners such as Graphplan [3], 4-col p600 first 511

he p20 first 0.2

e Jarge.d is a 17 blocks problem and he p25 first 11.9

he p29 first 0.9

e large.e a 19 blocks problem. he 30 first 131
We translate the examples to logic programs as described in Section 7. Table 3 contains
two entries for each problem: one reporting the time needed to find a valid plan with
the “optimal” number of situations given as input and one reporting the time needed to
show optimality, i.e., that no plan (no stable model) exists when the number of situation
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Table 3: Results for the blocks world examples.
problem Number of ~ Number of Time (s)
steps  ground rules

large.c 8 81682 23.2
7 72528 6.0
large.d 9 128000 471
8 115110 11.5
large.e 10 191622 101
9 174100 17.3
is decreased by one. For example, for large.c, the available situations are fg,...,ts and,

hence, the number of steps for applying operators is 8. This means that facts time(ty) +
,...,time(tg) < are given as a part of the program. For showing optimality the fact
time(ts)  is removed.

The time reported for each test case is the sum of the execution times of smodels and
lparse given a program with variables as input. Execution time was measured using
the Unix time command and it is the sum of user and system time. The time used
by lparse is usunally small compared to the time needed by smodels, except when the
number of ground rules is high. For example, for the largest planning example large.e
it takes 11.5 s for 1lparse to generate the corresponding ground program and for the
3-colorability problem for p6000 it takes 12.9 s to generate the corresponding ground
program with 161 839 rules. The tests were performed using smodels version 1.12 and
lparse version 0.9.19 (beta) on a Pentium IT 266MHz with 128MB of memory and the
Linux 2.0.35 operating system. The test cases are available at http://www.tcs.hut.fi/
pub/smodels/tests/lp-csp-tests.tar.gz.

10 Conclusions

We put forward logic programs with the stable model semantics as an interesting constraint
programming paradigm. The aim is to bring advantages of knowledge representation tech-
niques provided by logic programs to constraint programming in dynamic domains such
as planning. However, the paradigm differs considerably from the usual logic program-
ming methodology which is based on goal-directed backward chaining query evaluation
and where variables stand for arbitrary terms providing recursive data structures built
using function symbols. In the novel paradigm function symbols are not allowed and the
role of more complicated data structures is played by the stable models. The idea is that
a program is seen as a set of constraints describing valid solutions to a problem and the
stable models of the program correspond to the solutions satisfying the constraints.

Implementation methods for the stable model semantics have advanced significantly in re-
cent years. However, the most competitive available methods for computing stable models
are based on the idea of working with ground rules. Hence, for a program with variables
a grounding procedure is needed for generating a variable-free program. As a practical
solution to handling the grounding problem we introduce a subclass of programs, do-
main restricted programs, as a basis for developing efficient grounding procedures. It also
provides a framework for extending the paradigm with built-in predicates and functions.

7.

We have taken the first steps towards a programming methodology for the new paradigm
by presenting solutions to standard constraint satisfaction problems, combinatorial graph
problems and planning problems. The aim has been to devise solutions that have attrac-
tive properties from a knowledge representation point of view. We are able to provide
modular programs where the part of the program describing the instance (e.g., the graph
in question) is independent from the part capturing the constraints for valid solutions
(e.g., colorability conditions). Furthermore, our programs provide constructive solutions
in the sense that a valid solution (e.g., an assignment of colors to vertices) can be read
directly from a stable model of the program.

We have developed an efficient implementation of the paradigm based on domain restricted
programs. This is an extension of a previous implementation of the stable model semantics,
the Smodels system. In particular, we have developed a new efficient grounding procedure
for Smodels which is based on domain restricted programs with non-recursive domains
and which includes built-in functions and predicates for integer arithmetic. Test results
on CSPs, graph problems and planning are provided to illustrate the current level of
performance of our implementation. For example, for blocks world planning the results
compare well with efficient domain-independent planners such as Graphplan.

There are several interesting topics for further research. In many applications more ex-
pressive rules could be useful, e.g. for representing general disjunctive conditions. What
seems to be needed are classical inclusive and exclusive disjunctions instead of disjunctions
with a minimal model interpretation studied intensively in the logic programming setting.
An interesting question is whether such disjunctions can be incorporated without increas-
ing computational complexity substantially, i.e., whether key decision problems remain in
NP for ground programs. Another interesting extension would be to associate numerical
weights and values to atoms in order to capture, e.g., knapsack type of problems.
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