
www.manaraa.com

Logi
 Programs with Stable Model Semanti
s as a ConstraintProgramming Paradigm�Ilkka Niemel�aHelsinki University of Te
hnologyDepartment of Computer S
ien
e and EngineeringLaboratory for Theoreti
al Computer S
ien
eP.O. Box 5400, FIN-02015 HUT, FinlandIlkka.Niemela�hut.fihttp://www.t
s.hut.fi/~iniAbstra
tLogi
 programming with the stable model semanti
s is put forward as a novel
on-straint programming paradigm. This paradigm is interesting be
ause it bring advan-tages of logi
 programming based knowledge representation te
hniques to
onstraintprogramming and be
ause implementation methods for the stable model semanti
sfor ground (variable-free) programs have advan
ed signi�
antly in re
ent years. Fora program with variables these methods need a grounding pro
edure for generatinga variable-free program. As a pra
ti
al approa
h to handling the grounding prob-lem a sub
lass of logi
 programs, domain restri
ted programs, is proposed. Thissub
lass enables eÆ
ient grounding pro
edures and serves as a basis for integratingbuilt-in predi
ates and fun
tions often needed in appli
ations. It is shown that thenovel paradigm embeds
lassi
al logi
al satis�ability and standard (�nite domain)
on-straint satisfa
tion problems but seems to provide a more expressive framework froma knowledge representation point of view. The �rst steps towards a programmingmethodology for the new paradigm are taken by presenting solutions to standard
on-straint satisfa
tion problems,
ombinatorial graph problems and planning problems.An eÆ
ient implementation of the paradigm based on domain restri
ted programs hasbeen developed. This is an extension of a previous implementation of the stable modelsemanti
s, the Smodels system, and is publi
ly available. It
ontains, e.g., built-ininteger arithmeti
 integrated to stable model
omputation. The implementation isdes
ribed brie
y and some test results illustrating the
urrent level of performan
eare reported.1 Introdu
tionWe put forward logi
 programs with the stable model semanti
s (LPSM) as an interesting
onstraint programming paradigm. The goal is to bring advantages of logi
 programmingbased knowledge representation te
hniques to
onstraint programming. These te
hniques�This is an extended version of a paper presented at the Workshop on Computational Aspe
ts ofNonmonotoni
 Reasoning, Trento, Italy, May 30-June 1, 1998. The work has been supported by theA
ademy of Finland through Proje
t 43963. 1

seem parti
ularly useful in dynami
 domains (su
h as planning) where, e.g., the frameproblem and the quali�
ation problem emerge. The underlying idea in this paradigm isto interpret the rules of a program as
onstraints on a solution set for the program. Asolution set is a set of atoms and a logi
 program rule of the formA B1; : : : ; Bm;not C1; : : : ;not Cn (1)is seen as a
onstraint on this set stating that if B1; : : : ; Bm are in the solution set and noneof C1; : : : ; Cn are in
luded, then A must be in
luded in the set. A very natural de�nitionfor the solution sets is provided by stable models [17℄ whi
h form one of the leading de
lar-ative semanti
s of logi
 programs. However, a logi
 programming system supporting the
onstraint interpretation of rules is very di�erent from typi
al logi
 programming systems,su
h as Prolog implementations. Given a program the main task of su
h a system is to
ompute solution sets, i.e. stable models, for the program. This di�ers substantially fromthe usual logi
 programming paradigm whi
h builds on goal-dire
ted ba
kward
hainingquery evaluation where the task of the system is to
ompute for a given query a yes/noanswer or more generally an answer substitution.The integration of
onstraints and logi
 programming has been studied previously mainlyfrom the point of view of extending Prolog style goal-dire
ted implementation te
hniquesby allowing, e.g., arithmeti
 or �nite domain
onstraints in the rules and by integratingthe ne
essary
onstraint solvers into a logi
 programming system. This
onstraint logi
programming paradigm [21℄ has been extended to in
lude nonmonotoni
 reasoning
a-pabilities su
h as abdu
tion [22℄. However, the
onstraint logi
 programming paradigmdi�ers signi�
antly from our approa
h where the rules have a de
larative semanti
s and
an be understood themselves as
onstraints. Hen
e in our paradigm, rules
an be useddire
tly for expressing
onstraints without extending the language to allow
onstraint ex-pressions in the rules. Re
ently, similar ideas on employing rules as a methodology forexpressing
onstraints
apturing many kinds of problems su
h as
ombinatorial problems,graph problems and diagnosis, have been presented [10, 11, 15, 5, 6℄. Espe
ially
lose toour approa
h is the proposal put forward independently by Marek and Trusz
zy�nski [26℄ touse stable models as an alternative basis for logi
 programming where rules are interpretedas
onstraints in the same way as in our approa
h.The novel
onstraint programming paradigm based on stable models is be
oming in
reas-ingly interesting for pra
ti
al purposes as implementations of the stable model semanti
shave advan
ed signi�
antly in re
ent years. A number of new methods for
omputingstable models have been developed, e.g. [2, 7, 11, 29, 34℄, and the performan
e of theimplementations of these methods has progressed rapidly. For example, the Smodelssystem [29℄ has provided quite en
ouraging results in many appli
ation areas. Reasonablylarge
ombinatorial problems (e.g., graph
olorings and Hamiltonian
ir
uits) have beensolved using the system [29, 30℄. It is able to handle
omputationally hard propositionalsatis�ability problems, e.g., random 3-SAT problems in the phase transition region [12℄having around 250 variables. See, [33℄, for a
omparison of Smodels and Crawford'stableau system [12℄ whi
h is an eÆ
ient implementation of the Davis-Putnam methodfor de
iding propositional satis�ability. The Smodels system has been applied to theplanning domain [13℄ where it provides
omparable and o

asionally signi�
antly betterperforman
e than eÆ
ient general purpose planners su
h as Graphplan [3℄. There is alsointeresting new work on applying Smodels in veri�
ation of distributed systems. Forexample, it has been used with en
ouraging experimental results as a \�xed-point engine"2

www.manaraa.com

for implementing eÆ
ient model
he
king algorithms for distributed systems [24℄ and asthe basi
 inferen
e engine in a partial-order veri�
ation method for Petri nets [20℄.In this paper we aim to bring the novel paradigm yet another step
loser to pra
ti
alappli
ations (i) by proposing a sub
lass of domain restri
ted programs as a basis for han-dling rules with variables and built-in predi
ates and fun
tions and (ii) by developingprogramming methodology for the novel paradigm.Rules with variables provide a
ompa
t and easily maintainable knowledge representationme
hanism whi
h is useful in many appli
ations. However, the most
ompetitive availablemethods for
omputing stable models, e.g. [2, 7, 11, 29, 34℄, are based on the idea of workingwith ground rules. This means that for a program with variables a grounding pro
edure isneeded for
omputing a grounded program, i.e. a set of ground instan
es of the program,whi
h is sound and
omplete in the sense that the grounded program has exa
tly thesame stable models as the original program with variables. Clearly, implementing thegrounding pro
edure by generating the whole ground instantiation of the program leadsto una

eptable performan
e as the size of the ground instantiation
an grow very fast.Some resear
h has already been done on eÆ
ient grounding pro
edures. Cholewi�nski [9℄studies eÆ
ient grounding in the
ontext of default logi
. The SLG system developedby Chen and Warren [7℄ handles query-answering in the stable model semanti
s for non-ground programs in the following way: a query is �rst evaluated with respe
t to the well-founded semanti
s using SLG resolution (see [8, 32℄) whi
h produ
es a residual programfor the subgoals that are relevant for the query. The residual program
an be used foranswering the query with respe
t to the well-founded semanti
s. Given some restri
tionson the program, e.g. range restri
tedness, the residual program is ground and it
anbe used for stable model
omputations by employing one of the methods working onground programs. Combining SLG resolution and methods for ground programs o�ers aninteresting approa
h to query-answering in the stable model semanti
s. EÆ
ient WAM-based implementations for SLG resolution su
h as the XSB system [32℄ make this approa
heven more attra
tive.For
onstraint programming the use of SLG resolution is not unproblemati
 for two rea-sons. First, in real appli
ations the resulting ground programs might be large, e.g.,
ontain-ing more than 100 000 rules. This leads to eÆ
ien
y problems as
urrent implementationte
hniques for SLG resolution are not tuned for handling residual programs of this size.Se
ond, the use of the residual program
an lead to unsound results: the stable modelsof the residual program do not ne
essarily
orrespond to stable models of the originalprogram [7℄. The problem originates from the fa
t that SLG resolution is query-oriented,i.e., it works in a ba
kward
haining way starting from an initial query, and the residualprogram
ontains only rules that are relevant for the query in this ba
kward
hainingsense. However, in
onstraint programming we are looking for a solution that satis�esall the
onstraints. In order to guarantee soundness we must
hoose the initial query forSLG resolution
arefully so that all
onstraints are
overed. Of
ourse, a safe
hoi
e isto
onsider all predi
ates in the program but this
ould lead to performan
e problems.Determining an initial query that ensures soundness but is not unne
essarily large mightnot be trivial in all
ases.Example 1 Consider a situation where we have a
hoi
e between a and b and b leads to a
hain of reasoning that
an under some
onditions, e.g., depending on other
hoi
es, lead3

to a
on
i
t. So in a simpli�ed setting we
ould have a set of rules of the forma not bb not a
1 b;not
0
2
1...
n
n�1
0
n;not aWhen
onsidering queries involving a and b in a ba
kward
haining manner, the ruleson the right hand side are not relevant. So given that we are interested in a and b, wemight
on
lude that there are two solution sets, one
ontaining a and one b. However, thesolution set
ontaining b but not a does not satisfy the
onstraints given by the rules onthe right hand side. Hen
e, in order to guarantee soundness for SLG resolution we shouldin
lude in the initial query some
i as well. Sometimes it is quite straightforward to de
idewhat needs to be in
luded in the initial query but one should be
areful not to overlookany possibility.The soundness problem is avoided in the Smodels system [29℄ where the grounding pro-
edure works bottom-up and handles range restri
ted programs in a sound and
ompleteway. The grounding pro
edure seems to generate relatively small ground programs butdoes not appear to s
ale very well when the size of the generated ground program grows.The dlv system [15℄ implementing disjun
tive stable model semanti
s has also an intel-ligent grounding pro
edure whi
h is sound. The test results in [15℄ indi
ate that thisgrounder s
ales better than the original grounder in the Smodels system.In this paper we propose a pra
ti
al approa
h to solving the grounding problem where thesub
lass of programs to be handled is restri
ted. We put forward a sub
lass of programs,domain restri
ted programs, for whi
h it is possible to devise eÆ
ient grounding pro
edures
apable of handling eÆ
iently
ases where the resulting ground programs
ontain hundredsof thousands of rules and for whi
h the modeling
apabilities are still satisfa
tory forpra
ti
al purposes. This sub
lass provides also a framework where external and built-inpredi
ates and fun
tions
an be straightforwardly integrated into the novel paradigm.We have implemented a new grounding pro
edure for the Smodels system based on do-main restri
ted programs with non-re
ursive domain de�nitions. It works mu
h more eÆ-
iently than the original grounder in Smodels be
ause for non-re
ursive domains groundinstan
es
an be generated using eÆ
ient database te
hniques. The original groundingpro
edure in Smodels supports a wider
lass of programs, range restri
ted ones, butthe di�eren
e does not seem to be signi�
ant and, in pra
ti
e, range restri
ted rules
anbe extended to domain restri
ted ones with little e�ort. We start the development of aprogramming methodology for the novel
onstraint programming paradigm by workingthrough standard examples from
onstraint satisfa
tion,
ombinatorial graph problemsand planning.The rest of the paper is organized as follows. First we explain the formal underpinnings ofthe new paradigm, the stable model semanti
s. Then we dis
uss rules with variables andintrodu
e the
lass of domain restri
ted programs whi
h serves as a basis for implementingeÆ
ient grounding pro
edures and for integrating built-in predi
ates and fun
tions. Weshow that traditional Boolean
onstraints, i.e. propositional satis�ability,
an be embed-ded in a simple way into logi
 programs with the stable model semanti
s (LPSM) and4

www.manaraa.com

argue that from a knowledge representation point of view LPSM is more expressive thanpropositional logi
. We illustrate the use of LPSM by dis
ussing examples from
onstraintsatisfa
tion problems,
ombinatorial graph problems and planning. Finally we report onour work on implementing the paradigm and give some experimental results that illus-trate the
urrent level of eÆ
ien
y of our implementation. We �nish with some
on
ludingremarks.2 Stable Model Semanti
sIn this se
tion we formalize the
onstraint interpretation of rules by giving a de
larativesemanti
s for the solution sets in terms of stable models [17℄. We study �rst ground(variable-free) rules, i.e., rules where the atoms are variable-free atomi
 formulae. In thenext se
tion we show how the semanti
s generalizes to rules with variables.The starting point of the de
larative semanti
s for solution sets is the intuitive reading ofa rule of the form (1) as a
onstraint stating that if all the positive body literals Bi arein
luded in the solution set and for ea
h negative body literal not Cj the atom Cj is notin
luded, then the head of the rule A must be in
luded in the solution set. However, thisreading does not
apture all the important properties of solutions sets. In parti
ular, it isdesired that solution sets are minimal, i.e., a subset of a solution is no longer a solution.This means that, e.g., the program
onsisting of the rule p p has the empty set as itsunique solution set and that the set fpg is not a valid solution. Nonetheless, minimality isnot enough to
apture the intended semanti
s. This
an be seen by
onsidering a programp pq not pwhere fpg and fqg are minimal sets of atoms satisfying the intuitive reading of the rules.However, the set fpg is somehow
ir
ularly justi�ed: p is in the solution be
ause p is init! In appli
ations su
h
ir
ularly grounded solutions are often una

eptable and the ideais to devise a semanti
s whi
h guarantees both minimality and strong groundedness ofthe solutions. This
an be a
hieved by de�ning solution sets as the stable models of theprogram.The stable model semanti
s [17℄ generalizes in an elegant way the minimal model semanti
sof de�nite programs [36℄ to the
ase where negative body literals are allowed in the programrules. For a ground (variable-free) program P , the stable models are de�ned as follows.The redu
t P S of a program P with respe
t to a set of atoms S is the (de�nite) programobtained from P by deleting(i) ea
h rule that has a negative literal not C in its body with C 2 S and(ii) all negative literals in the bodies of the remaining rules.The redu
t P S
an be seen as the set of potentially appli
able rules given the stable modelS, i.e., as the rules where the negative body literals are satis�ed by the model. Note that inthe redu
t the negative body literals of the potentially appli
able rules are removed and,hen
e, the rules are de�nite. The idea is to
apture minimality and groundedness of astable model by requiring that every atom in the model is a
onsequen
e of the potentially5

appli
able rules given the model and every
onsequen
e of the potentially appli
able rulesis in
luded in the model.For a de�nite program P we
an de�ne a unique set of
onsequen
es Cl(P) in variousequivalent ways. We
an see the program as a set of inferen
e rules and then Cl(P) isthe dedu
tive
losure of the rules. On the other hand, a rule
an be taken as a (de�nite)
lause where the head is the positive literal and body literals are the negative literals ofthe
lause. Then Cl(P) is the unique minimal model of the
lauses whi
h
oin
ides withthe atomi
 logi
al
onsequen
es from the
lauses.Example 2 Consider the de�nite program Pp q pr p; qt r; ss sNow Cl(P) = fp; q; rg. In order to verify this we
an
onsider the program as a set ofinferen
e rules fp; pq ; p; qr ; r; st ; ssgand then Cl(P) = fp; q; rg is the dedu
tive
losure of the rules, i.e., the least set of atoms
losed under the rules. The
losure
an be
onstru
ted in a forward
haining manner bystarting from the empty set and in
luding a
onsequen
e of a rule to the set if the premisesof the rule are already
ontained in the set. For example, for the rules
orresponding tothe program P , p is in
luded �rst and then q followed by r. On the other hand, we
ansee the program as a set of de�nite
lausesfp; q _ :p; r _ :p _ :q; t _ :r _ :s; s _ :s; gand Cl(P) = fp; q; rg is the unique (subset) minimal model of the
lauses. Note that a setof atoms is the minimal model of a set of de�nite
lauses i� (if and only if) it is the set ofatomi

onsequen
es from the
lauses.De�nition 2.1 Let P be a ground (variable-free) program. Then a set of ground atomsS is a stable model of P i� S = Cl(P S).Hen
e, the stability of a model means that it
an reprodu
e itself in the sense that it isthe �xed point of the operator �P (S) = Cl(P S).Example 3 Program P p not q; rq not pr not ss not p6

www.manaraa.com

has a stable model S = fr; pg be
ause the redu
t P S of P with respe
t to S isp rr and S = Cl(P S). For instan
e, S0 = fp; sg is not a stable model of P be
ause the redu
tP S0 is fp rg and its dedu
tive
losure is fg 6= S0. In fa
t, P has another stable modelfs; qg.On the other hand, the program P 0 f 0 not f 0; ff has no stable models. To see this, assume that P 0 has a stable model S. Then f 2 S. Iff 0 2 S, then the redu
t is ff g and its
losure does not in
lude f 0. Hen
e, f 0 62 S butthen the redu
t is f 0 ff whose
losure
ontains f 0. However, if we remove the se
ond rule, then the resultingprogram has a stable model fg.The de�nition of stable models
aptures the two key properties of solution sets.� Stable models are minimal : a proper subset of a stable model is not a stable model.� Stable models are grounded : ea
h atom in a stable model has a justi�
ation in termsof the program, i.e., it is derivable from the redu
t of the program with respe
t tothe model.As we saw above, a program
an possess multiple stable models or none at all. Thede�nition of a stable model is non-
onstru
tive in the sense that it does not provide anydire
t method for
onstru
ting a stable model from a program. However, given a
andidateset of atoms it
an be
he
ked in linear time whether it is a stable model of a program asthe unique minimal model of a set of de�nite
lauses
an be
omputed in linear time [14℄. Ithas turned out that the problem of de
iding whether a ground program has a stable modelis NP-
omplete [25℄. The te
hniques for
omputing stable models for ground programshave advan
ed rapidly in re
ent years and now there are systems
apable of
omputingstable models for programs with tens of thousands of non-strati�ed rules.It should be noti
ed that unlike models for
lassi
al logi
 stable models have a nonmono-toni
 behavior, i.e., adding new rules
an lead to new models. Consider, e.g., the programP 0 in Example 3 whi
h has no stable model. If we add a fa
t f 0 , then the resultingprogram has a unique stable model ff; f 0g. In fa
t, stable models are
losely related toother formalizations of nonmonotoni
 reasoning. Their origins are in Moore's autoepis-temi
 logi
 [27℄ and logi
 programs
an be seen as a spe
ial
ase of autoepistemi
 theorieswith the not operator treated as disbelief :L where L is the belief operator of autoepis-temi
 logi
 [17℄. Stable models have been shown to
orrespond to other formalizations of7

nonmonotoni
 reasoning. For example, they
oin
ide with the in and out sets
omputedby a justi�
ation-based truth maintenan
e system (TMS) when logi
 programming rulesare treated as justi�
ations in a TMS [16℄. Furthermore, logi
 program rules
an be seenas default rules in Reiter's default logi
 [31℄ and then stable models
orrespond to defaultextensions [18℄.When using the rules as
onstraints, often integrity
onstraints, i.e., rules of the form B1; : : : ; Bm;not C1; : : : ;not Cn (2)are needed. These kinds of rules are straightforward to en
ode using ordinary rules.This
an be done, for example, by introdu
ing two new atoms f and f 0 and a new rulef 0 not f 0; f and �nally repla
ing every rule of the form (2) with one having f as itshead. Another approa
h
ould be to in
orporate the integrity
onstraints to the semanti
sby de�ning that a set of atoms S is a stable model for a program P (possibly with integrity
onstraints) i� S is a stable model for the ordinary rules in P and satis�es the integrity
onstraints in P . A set of atoms S satis�es a
onstraint of the form (2) i� it is not the
ase that fB1; : : : ; Bmg � S and fC1; : : : ; Cng \ S = ;.Example 4 Consider the program P in Example 3 extended by two integrity
onstraints not p; s r;not q; sThis program has only one stable model fr; pg as the other stable model of P , fs; qg, doesnot satisfy the �rst integrity
onstraint above.Integrity
onstraints provide a powerful and simple to use
onstraint programming te
h-nique for pruning unwanted stable models as they
annot introdu
e new stable modelsbut only
an eliminate them.Proposition 2.2 Let P be a program and IC a set of integrity
onstraints. Then if S isa stable model of P [IC, then S is a stable model of P .3 Logi
 Programs with VariablesIn this se
tion we generalize the de�nition of solution sets (stable models) to programswith variables. Then we introdu
e a sub
lass of programs, domain restri
ted programs,as a basis for developing eÆ
ient grounding pro
edures needed by
urrent methods for
omputing stable models whi
h work on ground rules. Finally we indi
ate how this sub
lassprovides a framework for in
orporating external and built-in predi
ates and fun
tions toour
onstraint programming paradigm.The stable model semanti
s for ground programs presented in the previous se
tion
an beextended straightforwardly to programs with variables by employing the notion of Her-brand models. For a program, its Herbrand universe is the set of ground terms
onstru
tedfrom the
onstants and fun
tions in the program and its Herbrand base is the set of atomi
ground formulae built from the Herbrand universe and the predi
ate symbols of the pro-gram. A Herbrand model is a subset of the Herbrand base. Noti
e that the Herbrandbase of a �nite program is �nite i� the program
ontains no fun
tion symbols.8

www.manaraa.com

De�nition 3.1 For a non-ground program P , the stable models of P are those of theground instantiation PH of P with respe
t to its Herbrand universe.Be
ause PH is the set of ground rules obtained from the rules in P by repla
ing variables inthe rules by ground terms given in the Herbrand universe of P , stable models are Herbrandmodels of the program, i.e., subsets of its Herbrand base.Example 5 In this paper we use a logi
 programming
onvention that the terms beginningwith a
apital letter are variables. Consider the program Pd1(a) d1(b) d1(
) s(X;Y;Z) d1(X); d2(Y); d3(Z);not d3(X)s(X;X;X) d1(X)Its Herbrand universe is fa; b;
g and Herbrand base isfd1(a); d1(b); d1(
); d2(a); d2(b); : : : ; s(b;
;
); s(
;
;
)g:The ground instantiation of the program with respe
t to its Herbrand universe has 33rules d1(a) d1(b) d1(
) s(a; a; a) d1(a); d2(a); d3(a);not d3(a)s(a; a; b) d1(a); d2(a); d3(b);not d3(a)...s(
;
;
) d1(
)and it has a unique stable model fd1(a); d1(b); d1(
); s(a; a; a); s(b; b; b); s(
;
;
)g.The role of variables in the new
onstraint programming approa
h is di�erent from thatin the usual Prolog style logi
 programming paradigm where variables stand for arbitraryterms providing re
ursive data stru
tures built using fun
tion symbols. Here the idea isto keep the basi
 de
ision problems de
idable and, thus, to avoid fun
tion symbols. Therole of more
ompli
ated data stru
tures is played by the stable models.Hen
e, we are
onsidering fun
tion-free programs whose Herbrand universe is always �niteand thus the ground instantiation of the program is �nite, too. Noti
e, however, that theground instantiation
an be very large
ompared to the original program. An upper boundon the size of the ground instantiation is r
v where r is the number of rules and
 thenumber of
onstants in the program and v is the upper bound on the number of distin
tvariables in any rule of the program. When implementing stable model
omputation forprograms with variables the size of the ground instantiation may be
ome problemati
be
ause the most
ompetitive available methods for
omputing stable models, e.g. [2, 7,9

11, 29, 34℄, are based on the idea of working with ground rules. Clearly, the approa
h wherethe whole ground instantiation of the program is
omputed �rst and stable models are
omputed from the ground instantiation
an lead to very big overheads and una

eptableperforman
e.Example 6 Consider the program P in Example 5. The ground instantiation of P has33 rules of whi
h
learly the 27 ground rules related to the fourth rule do not
ontributeto the stable models of P .Next we present a te
hnique for handling the grounding problem in a way whi
h worksfairly eÆ
iently in pra
ti
e. Our idea is to restri
t the
lass of programs so that a soundand
omplete subset of the ground instantiation
an be
omputed eÆ
iently. Soundnessand
ompleteness means that the subset has exa
tly the same stable models as the wholeground instantiation (and thus the original program).We restri
t the programs by requiring that every variable in a rule appears in some domainpredi
ate for whi
h it is easy to determine whi
h of its ground instan
es are in the stablemodels of the original program. If the relevant ground instan
es of the domain predi
atesin a rule are easy to determine, then the relevant ground instan
es of the rule
an be
omputed eÆ
iently one rule at a time. In the following we make these ideas more pre
ise.First we de�ne the
lass of domain restri
ted logi
 programs.De�nition 3.2 A logi
 program P is domain restri
ted for a set of predi
ates D if forea
h rule in P it holds that every variable in the rule appears also in a positive body literalof the rule for whi
h the predi
ate is from D.Noti
e that a domain restri
ted program is also a range restri
ted one, i.e., if a variableappears in a rule it also appears in some positive body literal in the same rule. The extra
ondition here is that the positive literal must be a domain predi
ate from a given set.For example, the program P in Example 5 is domain restri
ted for fd1; d2; d3g but not forfd1; d2g.De�nition 3.3 Let P be a logi
 program that is domain restri
ted with respe
t to D and^D a set of ground instan
es of predi
ates in D. We de�ne the program P ^D as the set ofground instan
es of the rules in P su
h that ea
h positive body literal with a predi
ate fromD belongs to ^D.Example 7 Consider the program P in Example 5 and set D = fd1; d2; d3g. For ^D =fd1(a); d2(a); d3(a); d3(b)g, P ^D isd1(a) d1(b) d1(
) s(a; a; a) d1(a); d2(a); d3(a);not d3(a)s(a; a; b) d1(a); d2(a); d3(b);not d3(a)s(a; a; a) d1(a)10

www.manaraa.com

The next problem is to determine when a set of ground instan
es ^D of the domain pred-i
ates is suÆ
ient in the sense that P and P ^D have exa
tly the same stable models. Forthat we de�ne a notion of
ompleteness.De�nition 3.4 Let P be a logi
 program that is domain restri
ted with respe
t to D and^D a set of ground instan
es of predi
ates in D. Then ^D is
omplete for P i� for ea
hground instan
e ^d of a predi
ate d 2 D it holds that (i) if ^d is in some stable model of P ,then ^d 2 ^D and (ii) if ^d is in some stable model of P ^D, then ^d 2 ^D.A
omplete set of ground instan
es is suÆ
ient as shown by the following theorem.Theorem 3.5 Let P be a domain restri
ted logi
 program with respe
t to D and ^D asubset of ground instan
es of predi
ates in D with respe
t to the Herbrand universe of Psu
h that ^D is
omplete for P . Then P and P ^D have the same stable models.Proof. Let PH be the ground instantiation of P with respe
t to its Herbrand universeand let S be a stable model of P , i.e., S = Cl(P SH). We show that S is a stable model ofP ^D, i.e., that S = Cl(P S^D) holds by establishingCl(P SH) = Cl(P S^D): (3)(�) Clearly, P ^D � PH , hen
e P S^D � P SH and thus Cl(P S^D) � Cl(P SH) by the monotoni
ityof Cl. (�) Let a 2 Cl(P SH). Taking the rules in P SH as inferen
e rules, this means thatthere is a proof a0; a1; : : : ; an = a where for ea
h ai, there is a rule ai b1; :::; bm 2 P SHsu
h that ea
h bl is some aj with j < i. We show that for all i = 0; 1; : : : ; n, ai 2 Cl(P S^D)by indu
tion on i. Clearly, a0 is a fa
t in the program P whi
h
annot
ontain variablesas the program is domain restri
ted. Hen
e, a0 2 P ^D and a0 2 Cl(P S^D). Assume thatthere is a proof a0; a1; : : : ; ai. Hen
e, there is a rule r of the form ai b1; :::; bm 2 P SHsu
h that ea
h bl is some aj with j < i. By the indu
tion hypothesis, ea
h bl 2 Cl(P S^D).We show that r 2 P S^D holds whi
h implies ai 2 Cl(P S^D). As r 2 P SH , there is rule r0 2 Psu
h that r is obtained from r0 by repla
ing the variables of r0 by ground terms and thenremoving the negative body literals. For ea
h domain predi
ate d in r0, there is a groundinstan
e bj in r. But as ea
h su
h ground instan
e bj belongs to the stable model S ofP , then by the property (i) for a
omplete set of ground instan
es ^D, bj 2 ^D and, hen
e,r 2 P S^D. Thus, we have shown that a 2 Cl(P SH) implies a 2 Cl(P S^D). Hen
e, (3) holds.Similarly, we
an show that a stable model of P ^D is a stable model of P by using theproperty (ii) of a
omplete set of ground instan
es.Example 8 It is not very hard to
ome up with
omplete sets of ground instan
es ofthe domain predi
ates under some restri
tions on the program. Below we provide a fewexamples:� If a program P is range restri
ted, then we
an take D to be the set
onsisting ofevery predi
ate appearing in a positive body literal and ^D to be the set in
luding alltheir ground instan
es. Now P ^D is the same as the ground instantiation of P and is
learly
omplete. 11

� Let a program P be domain restri
ted with respe
t to a set D of predi
ates whi
happear in the head of a rule in P only if the rule is a fa
t. Now we
an take as theset of ground instan
es ^D the set of fa
ts for the predi
ates from D in P . This setis
omplete for P .� Let a program P be domain restri
ted with respe
t to a set of predi
ates D whi
hhave strati�ed [1℄ de�nitions in P depending only on predi
ates in D. Then a
omplete set of ground instan
es ^D is given by the unique stable model of the rulesrelevant to the predi
ates from D in P .

The idea is to employ the notion of domain restri
ted programs and Theorem 3.5 to �nda sub
lass of programs with satisfa
tory expressive power for appli
ations su
h that thegrounding problem
an still be solved eÆ
iently. Noti
e that when a
omplete set of groundinstan
es ^D has been
omputed, then a suÆ
ient set of ground instan
es of the program,P ^D,
an be produ
ed very eÆ
iently by
onsidering one rule of the original program at atime. Hen
e, the key question is to �nd a sub
lass of programs for whi
h a
omplete setof ground instan
es
an be
omputed eÆ
iently and the resulting set of ground rules isstill of manageable size.The last alternative in the example above, i.e., domain restri
ted programs with strati�eddomains, is a promising basis for handling the grounding problem. It allows an expressivelanguage for de�ning domain predi
ates, i.e., that of strati�ed programs, and it fa
ilitatesthe
omputation of the ground program as the domain predi
ates
an be evaluated sepa-rate from the rest of the program one stratum at a time starting from the lowest strata.Furthermore, with strati�ed domain predi
ates we
an tighten the de�nition of the re-sulting ground program P ^D and exploit also the domain predi
ates in the negative bodyliterals. This means that without loosing
ompleteness we
an limit the ground instan
esin P ^D to those where ea
h positive body literal with a predi
ate from D belongs to ^Dand where for ea
h negative body literal not C with a predi
ate from D, the atom C is notin
luded in ^D. These properties make this sub
lass of programs more attra
tive than,e.g., range restri
ted programs. This is be
ause range restri
ted programs do not seemto share su
h
omputational advantages but do not o�er mu
h more modeling power to
ompensate the added
omplexity of the grounding problem. Note that it
an be eÆ
iently
he
ked whether a program is domain restri
ted with strati�ed domains. This
an be doneby using the dependen
y graph of the program [1℄ to determine the set of all predi
atesD de�ned in a strati�ed way and then
he
king whether the program is domain restri
tedfor this set D.Strati�ed domain de�nitions allow also re
ursive de�nitions whi
h means that determiningthe
omplete set of ground instan
es for the domain predi
ates involves re
ursive queryevaluation te
hniques. It is not straightforward to obtain good performan
e when eval-uating re
ursive rules and further
ompli
ations arise as we aim to in
orporate built-inpredi
ates and fun
tions in the domain de�nitions.In order to
ir
umvent these diÆ
ulties we are putting forward a sub
lass that we
alldomain restri
ted programs with non-re
ursive domains. This is a sub
lass of programswith strati�ed domains where the domain predi
ates have strati�ed but non-re
ursive12

www.manaraa.com

de�nitions in the program depending only on other domain predi
ates. This means that,e.g., the transitive
losure t
 of a domain predi
ate rel given by the rulest
(X;Y) rel(X;Y)t
(X;Y) rel(X;Z); t
(Z; Y)
annot serve as a further domain predi
ate in this restri
ted sub
lass although it
anwhen general strati�ed domains are allowed. Noti
e that the se
ond rule is not domainrestri
ted as t

annot a
t as a domain predi
ate. In order to transform the rule to adomain restri
ted one, a new domain predi
ate for the variable Y needs to be added. Astraightforward way to de�ne su
h a domain predi
ate d is to use a rule d(Y) rel(X;Y).This sub
lass is an interesting
ompromise: (i) Non-re
ursive domain predi
ates allow afair amount of modeling power
orresponding to view de�nitions in relational databases.Hen
e, new domain predi
ates
an be de�ned from the basi
 ones using, e.g., unions,interse
tions, di�eren
es, proje
tions and joins. (ii) A
omplete set of ground instan
esfor su
h a set of domain predi
ates
an be
omputed eÆ
iently using database te
hniquesby evaluating the predi
ates one stratum at a time using database operations startingfrom the lowest strata. We demonstrate the expressivity of domain restri
ted programswith non-re
ursive domains by using this sub
lass in all the examples for the rest of thepaper.We end this se
tion by pointing out that the notion of domain restri
ted programs withnon-re
ursive domains provides a simple framework where di�erent kinds of external andbuilt-in predi
ates
an be easily in
orporated to rule bodies. This is be
ause diÆ
ult se-manti
al issues related to
oundering are avoided and the evaluation of built-in predi
atesand fun
tions is straightforward to integrate into the database te
hniques for
omputingthe
omplete set of ground instan
es for the domain predi
ates. The idea is that we allowin the rule bodies predi
ates and fun
tions that have their de�nitions given externally, e.g.,in a relational database or as a built-in pro
edure implemented in some other programminglanguage and use them to de�ne further domain predi
ates.Example 9 We illustrate the possibilities by an example of using built-in predi
ates andfun
tions for integers. For example, we
ould have a built-in predi
ateminus(X;Y;Z)
or-responding to the set of fa
ts minus(x; y; z) where x; y; z are integers su
h that z = x� y.There is no need for this set of fa
ts to be represented expli
itly in the program and it
ould be implemented as an external pro
edure in some other programming language.For keeping the semanti
s
lear it is enough to avoid
oundering, i.e., a
all to an ex-ternal pro
edure where the parameters have uninitialized values. This
an happen whenan externally de�ned predi
ate has a variable as an argument and the range of groundterms over whi
h the variable
an vary is not
lear. Domain restri
tion eliminates su
h apossibility.Con
eptually there is no problem in in
orporating also built-in fun
tions in the bodyliterals of rules as long as we avoid
oundering. Hen
e, we
ould have a built-in fun
tionminus(X;Y) whi
h we
ould use in the rule body. In what follows we use the usual in�xnotation for arithmeti
 fun
tions.The following shorthand is often handy for representing basi
 domains. We assume thata rule d(n::m) stands for a set of fa
ts d(n) ; d(n + 1) ; : : : ; d(m) if n;m areintegers su
h that n � m. 13

Using these kinds of
onstru
tions it is then fairly easy to represent many interestingproblems. We illustrate the ideas by a program that de�nes a (domain) predi
ate gridmodeling grid graphs where nodes are pairs of integers and ((i; j); (i0 ; j0)) is an edge i�ji� i0j+ jj � j0j = 1.So we are given some basi
 domain predi
atesxdim(1::x) ydim(1::y) whi
h represent the dimensions of the grid graph where x and y are integers with x; y � 1.We de�ne the predi
ate grid(I; J; I 0; J 0) su
h that ((I; J); (I 0; J 0)) is an edge in the gridgraph with dimension x; y as follows:grid(I; J; I 0; J 0) xdim(I); ydim(J); xdim(I 0); ydim(J 0);abs(I � I 0) + abs(J � J 0) = 1:where abs is a built-in fun
tion su
h that abs(x) = jxj. It should be noti
ed that externalpredi
ates and fun
tions
an be used for de�ning new domain predi
ates in a non-re
ursivefashion without any semanti
al diÆ
ulties as long as the program remains domain re-stri
ted. For example, the predi
ate grid
an be taken as a new non-re
ursively de�neddomain predi
ate, although it depends not only on previously de�ned domain predi
atesxdim; ydim but also on built-in fun
tions and predi
ates `�', `+', `abs', `='. Hen
e, it
anbe used for de�ning further domain predi
ates. For example, we
ould
ode a node (I; J)as a single integer X = (I � 1) � y + J and de�ne a
orresponding graph for these nodesin terms of new domain predi
ates edge and vertex:edge(X;Y) grid(I; J; I 0; J 0);X = (I � 1) � y + J; Y = (I 0 � 1) � y + J 0vertex(X) edge(X;Y)vertex(Y) edge(X;Y)4 Relation to Propositional Satis�abilityStable models are sets of atoms similar to propositional models. However, there are twosigni�
ant di�eren
es. Stable models are minimal and grounded. We show that despite thedi�eren
es propositional satis�ability (SAT)
an be easily redu
ed to LPSM by employinga simple lo
al mapping. Then we argue that a similar lo
al mapping is not possible in thereverse dire
tion implying that LPSM is more expressive than propositional logi
 from aknowledge representation point of view.SAT
an be mapped to LPSM by
onstru
ting a ground logi
 program TrSAT(S) for a setof
lauses S, for example, in the following straightforward way. (i) We introdu
e for ea
hatom a appearing in S two atoms a and ^a and in
lude two rules^a not aa not ^a(ii) For ea
h
lause in S, we introdu
e a new atom
 and in
lude one rule for ea
h literall in the
lause as follows: if l is a positive atom a, take the rule
 a and if l is thenegation of an atom a, add
 ^a and (iii) �nally we in
lude the rule not
.14

www.manaraa.com

Example 10 For a set of
lauses S = fa _ :b;:a _ bgthe translation TrSAT(S)
ontains the rules^a not aa not ^a^b not bb not ^b
1 a
1 ^b not
1
2 ^a
2 b not
2

You et al. [38℄ present a redu
tion from propositional satis�ability to logi
 programs whi
his based on similar ideas as the mapping above but they use as the target language ex-tended logi
 programs (with
lassi
al negation) and study spe
ial semanti
s developed forextended programs instead of the stable model semanti
s.Proposition 4.1 A set of
lauses S has a model i� TrSAT(S) has a stable model.The proposition shows that propositional satis�ability
an be redu
ed to the problemof �nding a stable model. Note that a stable model of TrSAT(S) provides dire
tly apropositional model for the
lauses S where atoms in the stable model are assigned trueand the rest of the atoms false (atoms a for whi
h ^a is in the stable model).Although it is
lear from the
omplexity results that the problem of �nding a stablemodel
an be redu
ed in polynomial time to a propositional satis�ability problem (asboth are NP-
omplete problems), it is not obvious whether the two approa
hes are equallyexpressive from a knowledge representation point of view. In fa
t, there seems to be noway of mapping LPSM to SAT in a similar lo
al modular fashion as we embedded SAT toLPSM above where small lo
al
hanges in the input
lauses lead to small lo
al
hanges inthe
orresponding logi
 program. Noti
e that our translation from SAT to LPSM is verymodular as ea
h
lause
an be translated to a set of rules independently of other
lauses.We
an show that su
h a mapping in the reverse dire
tion is not possible even under mildassumptions on the notion of modularity. Consider, e.g., a notion of modularity wherea mapping T(�) from logi
 programs to propositional
lauses is said to be modular if forany program P , for ea
h set of atomi
 fa
ts F , P [F has a stable model i� F [T(P)is satis�able. The intuition here is that for a modular mapping, adding an atom to theprogram should lead to a lo
al
hange not involving the translation of the rest of theprogram.Proposition 4.2 There is no modular mapping from logi
 programs to
lauses.Proof. Consider a program P = fp not pg. Assume that T(�) is a modular mapping.Then as P has no stable models, T(P) is unsatis�able. But then fpg[T(P) is unsatis�able.This implies that P [fp g has no stable model whi
h is
learly not the
ase. Hen
e, nomodular mapping exists. 15

We �nish the se
tion by dis
ussing the impli
ations of the results to the relative knowl-edge representation
apabilities of propositional logi
 and LPSM. The modular mappingfrom SAT to LPSM indi
ates that whenever there is a natural representation of (somepart of) a domain using propositional logi
, this
an be used almost dire
tly in the frame-work of LPSM with small overhead through, e.g., the mapping above. Noti
e that theoverhead
aused by the introdu
tion of an extra atom ^a for ea
h propositional atom a isnot signi�
ant be
ause the state of the art implementations of stable model
omputationpropagate the rules eÆ
iently in both dire
tions and
an determine the other atom im-mediately whenever one of a; ^a be
omes determined. Hen
e, the stru
ture of the sear
hspa
e for propositional models of a set of
lauses is similar to that for stable models of the
orresponding set of rules. Also maintaining su
h a representation as rules is
omparableto maintenan
e of the propositional representation be
ause small
hanges in the
lausalrepresentation lead to small lo
al
hanges in the
orresponding rule set.The last proposition implies that there
ould be situations having a natural representationin LPSM but not when employing propositional logi
 in the sense that even simple updateslike adding a new fa
t
ould lead to non-lo
al
hanges in the propositional representationof the situation. In parti
ular, this seems to hold in dynami
 situations where, e.g., theframe problem and the quali�
ation problem have to be addressed. Hen
e, the results inthis se
tion seem to strongly suggest that LPSM provides a more expressive knowledgerepresentation framework than
lassi
al propositional logi
.Another signi�
ant di�eren
e between SAT and LPSM is in the stru
ture of the sear
hspa
es where the minimality and groundedness properties of stable models appear toprovide interesting
omputational advantages. We return to this point in Se
tion 8.5 Relation to Constraint Satisfa
tion ProblemsIn the previous se
tion we showed that Boolean
onstraints
an be embedded into LPSMusing a simple lo
al translation but that a similar lo
al translation in the reverse dire
tion isnot possible. More general forms of
onstraints seem to have similar problems in
apturingstable models but the other dire
tion is still fairly straightforward. We demonstrate thisby outlining a simple lo
al mapping of
onstraint satisfa
tion problems (CSPs) to LPSM.Then we dis
uss some standard problems from the CSP literature.A CSP
onsists of a set of variables with �nite domains and a set of
onstraints. Ea
h
onstraint spe
i�es a set of allowed
ombinations of variables and values. A solution to theCSP is an assignment of values to variables su
h that ea
h variable has exa
tly one valuefrom its domain and all
onstraints are satis�ed, i.e., for ea
h
onstraint the assignmentagrees with an allowed
ombination in the
onstraint. It is straightforward to representsu
h a problem using rules.� For ea
h domain value
 in the CSP we adopt a
onstant
.� For ea
h domain d in the CSP we adopt a one-pla
e predi
ate d and a set of fa
tsd(
1) ; : : : ; d(
n) where
1; : : : ;
n are the possible values of the domain d.� For ea
h variable v with the domain d in the CSP we adopt one-pla
e predi
ates vand ov and two rules v(X) d(X);not ov(X)16

www.manaraa.com

ov(X) d(X); d(Y); v(Y);X 6= Ywhere the predi
ate ov(X) models the fa
t that the variable v has some other valuethan X.� For ea
h
onstraint
o giving a set of allowed value
ombinations for a set of variablesv1; : : : ; vj we take the fa
t
onstraint(
o) and for ea
h allowed value
ombinationv1 =
1; : : : vj =
j a rule sat(
o) v1(
1); : : : ; vj(
j)and �nally a rule
onstraint(C);not sat(C):stating that ea
h
onstraint C must be satis�ed.Hen
e, a CSP
an be represented in LPSM in a very straightforward and easily main-tainable way. For example, adding a new domain value
 to the domain d
an be donejust by adding the
orresponding fa
t d(
) . Sometimes
onstraints in a CSP are givenin terms of disallowed
ombinations of values to variables. These kinds of
onstraintsare also straightforward to represent with rules. For example, a disallowed
ombinationv1 =
1; : : : vj =
j
an be
aptured with a rule v1(
1); : : : ; vj(
j):5.1 ExamplesConstraints often have a very natural representation dire
tly as logi
 program rules. Weillustrate this using a few standard examples from the CSP literature.Pigeon: Put N pigeons into M holes so that there is at most one pigeon in a hole.This problem
an be solved with the following programpos(P;H) pigeon(P); hole(H);not negpos(P;H)negpos(P;H) pigeon(P); hole(H);not pos(P;H) pigeon(P); hole(H); hole(H 0); pos(P;H); pos(P;H 0);H 6= H 0 pigeon(P);not hashole(P)hashole(P) pigeon(P); hole(H); pos(P;H) pigeon(P); pigeon(P 0); hole(H); pos(P;H); pos(P 0;H); P 6= P 0where the domain predi
ates hole and pigeon give the available holes and pigeons.The idea is that pos(p; h) gives a legal position of pigeon p in hole h. For ea
h holeh and pigeon p, pos(p; h) is modeled as a `two-valued' atom, i.e., every stable model
ontains either it or its `
omplement' negpos(p; h). For representing the ne
essary
onstraints we use the te
hnique based on integrity
onstraints for eliminating stablemodels not
orresponding to valid assignments of pigeons to holes as follows. The�rst two rules establish the two-valued
hara
ter of pos and provide the
andidatestable models. The rest of the rules prune this set of models. The third rule is an17

integrity
onstraint stating that a pigeon
annot be in two holes and the followingtwo rules that a pigeon must be in at least one hole. Note that we employ a new\de�ned" predi
ate hashole for representing the
onstraint. Su
h de�ned predi
atesappearing in integrity
onstraints do not introdu
e new stable models. The last rulesays that there
annot be two pigeons in the same hole. The resulting program hasa stable model i� the pigeon problem has a solution and a solution
an be read fromthe stable model S as follows: pos(p; h) 2 S i� pigeon p is in hole h in the solution.Queens: Pla
e n queens on an n � n board so that no queen
he
ks against any otherqueen.This problem
an be handled using the following programq(X;Y) d(X); d(Y);not negq(X;Y)negq(X;Y) d(X); d(Y);not q(X;Y) d(X); d(Y); d(X 0); q(X;Y); q(X 0; Y);X 0 6= X d(X); d(Y); d(Y 0); q(X;Y); q(X;Y 0); Y 0 6= Y d(X); d(Y); d(X 0); d(Y 0); q(X;Y); q(X 0; Y 0);X 6= X 0; Y 6= Y 0;abs(X �X 0) = abs(Y � Y 0) d(X);not hasq(X)hasq(X) d(X); d(Y); q(X;Y)where the domain predi
ate d provides the dimension of the board, i.e., d(1::n) isin
luded in the program. The idea is that q(x; y) gives a legal position of a queen andit is again modeled as a `two-valued' atom using the �rst two rules. The integrity
onstraint based te
hnique is used for eliminating non-valid solutions. The thirdrule says that there
annot be two queens in the same row, the fourth eliminates twoqueens in the same
olumn and the �fth two queens in the same diagonal. The lasttwo rules say that there must be a queen in ea
h
olumn. Noti
e that in a problemlike this (integer) arithmeti
 enables very
ompa
t representation of
onstraints asexempli�ed by the �fth rule. The resulting program has a stable model i� the queensproblem has a solution and a solution
an be read from the stable model S as follows:q(x; y) 2 S i� (x; y) is a legal position for a queen on the board.S
hur: Partition the integers N = f1; 2; :::; ng into b boxes su
h that for any x; y 2 N , (i)x and 2x are in di�erent boxes and (ii) if x and y are in the same box, then x+ y isin a di�erent box.This problem
an be solved using the following programpos(X;B) n(X); b(B);not negpos(X;B)negpos(X;B) n(X); b(B);not pos(X;B) n(X); b(B); b(B0); pos(X;B); pos(X;B0); B 6= B0 n(X);not hasbox(X)hasbox(X) n(X); b(B); pos(X;B) n(X); b(B); pos(X;B); pos(2 �X;B) n(X); n(Y); b(B); pos(X;B); pos(Y;B); pos(X + Y;B)18

www.manaraa.com

where the set of integers is given by the domain predi
ate n, the boxes by thepredi
ate b and pos(x; y) means that the integer x
an be put in a box y. Again weuse a
ombination of the `two-valued' modeling te
hnique and integrity
onstraintswhere the �rst �ve rules spe
ify the two-valued
hara
ter of pos and state that ea
hnumber
an be in exa
tly one box. The last two rules
orrespond dire
tly to the
onditions (i) and (ii) above.Often
ombinatorial problems and
onstraint satisfa
tion problems have a largeamount of symmetri
 solutions. By eliminating symmetries the sear
h spa
e of su
ha problem
an be pruned
onsiderably. In LPSM it is possible to do this de
larativelywithout modifying the underlying sear
h pro
edure for stable models by adding newrules. We illustrate this with the program above that allows symmetri
 solutionswhere the boxes are permuted. These
an be eliminated by assuming a linear orderfor the boxes (naming them by integers) and by using the integrity
onstraint basedte
hnique leading to the following rules saying that for ea
h integer x we should usethe smallest available box, i.e., a box for whi
h no smaller box is free of integerssmaller than x. n(X); b(B); pos(X;B); b(B0); B0 < B;not o

upied(X;B0)o

upied(X;B) n(X); b(B); n(Y); Y < X; pos(Y;B)Here o

upied(X;B) models the fa
t that there is some integer Y < X o

upyingthe box B.6 Combinatorial Graph ProblemsIn this se
tion we demonstrate the appli
ability of LPSM to solving
ombinatorial graphproblems by
onsidering two typi
al problems:
olorability and Hamiltonian
ir
uits. Theidea is to illustrate the knowledge representation
apabilities of rules and show that LPSMprovides a
ompa
t and easily maintainable approa
h to des
ribing su
h problems. Main-tainability means that the rules spe
ifying the
orre
t solutions are independent of thegraph under
onsideration and, thus, the graph
an be
hanged without
hanging otherparts of the program and similarly for important parameters for the problems, e.g., thenumber of available
olors, whi
h
an be altered without modifying any other part of theprogram.K-
olorabilityFirst
onsider the k-
olorability problem, i.e., the problem of �nding an assignment ofone of k
olors to ea
h vertex of a graph su
h that verti
es
onne
ted with an ar
 do nothave the same
olor. This problem
an be mapped to a stable model �nding problem asfollows. Assume that we have a database giving a graph in terms of atomi
 fa
ts of theform vertex(v) and ar
(v; u) and the available
olors as fa
ts
ol(
) . Then takethe program with the rules below.
olor(V;C) vertex(V);
ol(C);not other
olor(V;C)other
olor(V;C) vertex(V);
ol(C);
ol(D); C 6= D;
olor(V;D) ar
(V;U);
ol(C);
olor(V;C);
olor(U;C)19

h
(V;U) ar
(V;U);not otherroute(V;U)otherroute(V;U) ar
(V;U); ar
(V;W); h
(V;W); U 6=Wotherroute(V;U) ar
(V;U); ar
(W;U); h
(W;U); V 6=Wrea
hed(U) ar
(V;U); h
(V;U); rea
hed(V);not initialnode(V)rea
hed(U) ar
(V;U); h
(V;U); initialnode(V) vertex(V);not rea
hed(V)Figure 1: A program for Hamiltonian
ir
uits.The �rst two rules demonstrate a knowledge representation te
hnique based on rules withex
eptions. The �rst rule says that vertex V has
olor C unless there is some ex
eption(other
olor) and the se
ond rule spe
i�es the ex
eptions. This provides the
andidatesolutions and the third rule eliminates those not
orresponding to legal
olorings. Theprogram has a stable model i� there is a k-
oloring of the graph. Note that the mappingfrom
olorability to LPSM is
onstru
tive in the sense that a k-
oloring of the graph isdire
tly obtained from a stable model by taking the fa
ts of the form
olor(v;
) that aretrue in the model.Hamiltonian
ir
uitsAs an example of a problem whi
h is not straightforward to map to a
onstraint satisfa
tionproblem but whi
h has a natural
oding in LPSM we
onsider the Hamiltonian
ir
uitproblem, i.e., the problem of �nding a path in a graph that visits ea
h vertex of the graphexa
tly on
e and returns to the starting vertex. Again assume that we have a databasegiving a graph in terms of atomi
 fa
ts of the form vertex(v) and ar
(v; u) . Weadd to the fa
ts the rules in Figure 1 and take one of the verti
es v as the starting vertex(initialnode(v) is added). The idea is that a fa
t h
(v; u) holds if the ar
 (v; u) belongsto the Hamiltonian
ir
uit. The �rst three rules ensure that for ea
h node exa
tly onein
oming and outgoing ar
 belong to the path. Here we employ rules with ex
eptions again.The �rst rule says that an ar
 belongs to the
ir
uit if there is no ex
eption, i.e., no otherroute between the two nodes. The last three rules state that the path forms a
y
le whi
hvisits all nodes and returns to the initial node. By exploiting the groundedness propertyof stable models the notion of a path forming a
y
le
an be
aptured in a
ompa
t wayusing a de�ned predi
ate rea
hed and an integrity
onstraint. This leads to an easilymaintainable representation where, e.g., the graph
an be
hanged without
hanging therules des
ribing the
onditions on the
ir
uit. The resulting program has a stable model i�the graph has a Hamiltonian
ir
uit. Note that the mapping from Hamiltonian
ir
uits toLPSM is
onstru
tive in the sense that a
ir
uit is dire
tly obtained from a stable modelby taking the fa
ts of the form h
(v; u) in the model.7 PlanningPlanning provides a parti
ularly interesting appli
ation area for nonmonotoni
 reasoningsystems su
h as implementations of LPSM be
ause this is a domain from whi
h someof the main motivation for developing nonmonotoni
 formalisms originates. In planningdiÆ
ult issues related to reasoning about a
tion and
hange su
h as the frame problem have20

www.manaraa.com

to be addressed and the expressivity of the nonmonotoni
 formalisms
an be utilized toover
ome some of the diÆ
ulties. We illustrate with a blo
ks world example how planningproblems
an be mapped to logi
 programming rules. For more detailed a

ounts, we referthe reader, e.g., to [19, 13℄.In the blo
ks world we are given initial
onditions
on
erning blo
ks on a table statinghow they are sta
ked on top of ea
h other and similar goal
onditions. The aim is togenerate a plan, i.e., a sequen
e of move operations starting from the initial
on�gurationand leading to a
on�guration where the goal
onditions are satis�ed.Consider the following example. In the initial
on�guration we have three blo
ks a; b;
su
h that b and
 are on the table and a is on top of b. The goal
onditions are that
 ison a and b is on
. A possible solution for this planning problem is a sequen
e of moveswhere a is moved onto the table,
 is moved onto a and �nally b is moved onto
.The idea is to map a planning problem to a logi
 program su
h that stable models
or-respond to valid plans. For formalizing blo
ks world planning we use situations wherefa
ts hold. Planning is PSPACE-
omplete [4℄ and one way of restri
ting the problem toan NP-
omplete one is to bound the length of the plan. Hen
e, we assume that we havea limited number of situations t0; : : : ; tn where t0 is the initial situation and the availablesituations are given using fa
ts of the form time(ti) . A predi
ate nextstate spe
i�esthe order of the situations, i.e., for ea
h i = 0; : : : ; n � 1, nextstate(ti+1; ti) holds. Weemploy predi
ates on(X;Y; T) (X is on Y in the situation T) and moveop(X;Y; T) (X ismoved onto Y in the situation T) and assume that the available blo
ks are spe
i�ed usingfa
ts of the form blo
k(b) .The initial
onditions are straightforward to formalize. For instan
e, for the example aboveit is suÆ
ient to in
lude the fa
ts on(a; b; t0) on(b; table; t0) on(
; table; t0) In order to
apture the goal
onditions we employ a predi
ate goal(T) whi
h holds in anysituation T where the goal
onditions have been rea
hed. For the example above, theresulting rule is goal(T) time(T);on(b;
; T);on(
; a; T)The idea is that a valid plan
orresponds to a stable model where the goal
ondition hasbeen a
hieved in some available situation. This is
aptured by the following two rules.The third rule ensures that if predi
ate goal(T) holds in a situation, then it holds also inall subsequent situations. This is employed later in the operator des
riptions.goal time(T); goal(T) not goalgoal(T2) nextstate(T2; T1); goal(T1)In order to formalize the pre
onditions and e�e
ts of the move operator we use the followingrules. The �rst rule spe
i�es the pre
onditions and uses the te
hnique based on ex
eptions.21

An instan
e of the move operator is appli
able if there are no ex
eptions, i.e., the obje
tto be moved and the destination are not
overed and the move operator instan
e is notexpli
it blo
ked (blo
ked move). The ex
eptions are then listed below. The e�e
t of themove operator
an be stated dire
tly as given in the se
ond rule.moveop(X;Y; T) time(T);blo
k(X);obje
t(Y);X 6= Y;on something(X;T);available(Y; T);not
overed(X;T);not
overed(Y; T);not blo
ked move(X;Y; T)on(X;Y; T2) blo
k(X);obje
t(Y);nextstate(T2; T1);moveop(X;Y; T1):on something(X;T) blo
k(X);obje
t(Z);time(T);on(X;Z; T)available(table; T) time(T)available(X;T) blo
k(X);time(T);on something(X;T)
overed(X;T) blo
k(Z);blo
k(X);time(T);on(Z;X; T)obje
t(table) obje
t(X) blo
k(X)It is enough to provide a frame axiom only for the predi
ate on and this
an be stated
ompa
tly as a rule with ex
eptions where the ex
eptional situations are
aptured usingthe predi
ate moving. on(X;Y; T2) nextstate(T2; T1);blo
k(X);obje
t(Y);on(X;Y; T1);not moving(X;T1)moving(X;T) time(T);blo
k(X);obje
t(Y);moveop(X;Y; T)22

www.manaraa.com

What remains to be stated are the blo
king
onditions for the moves. The �rst set of
onditions
overs the
ases where the goal has been rea
hed or the instan
e of the moveoperator has not been
hosen.blo
ked move(X;Y; T) blo
k(X);obje
t(Y);time(T);goal(T)blo
ked move(X;Y; T) time(T);blo
k(X);obje
t(Y);not moveop(X;Y; T)The se
ond set depends on whether
on
urren
y is allowed, i.e., whether more than oneoperator
an be applied in a situation. We allow this and blo
k only the operator instan
eswhose e�e
ts are in
on
i
t, i.e., whi
h
annot be arbitrary interleaved. Computationallythis seems advantageous as it de
reases sear
h spa
e explosion due to interleavings ofindependent operators in linear planning.blo
ked move(X;Y; T) blo
k(X);obje
t(Y);obje
t(Z);time(T);moveop(X;Z; T);Y 6= Z:blo
ked move(X;Y; T) blo
k(X);obje
t(Y);time(T);moving(Y; T)blo
ked move(X;Y; T) blo
k(X);blo
k(Y);blo
k(Z);time(T);moveop(Z; Y; T);X 6= ZThis kind of a
onstraint formulation of planning allows
exible integration of di�erentkinds of pruning rules. For example, we
an ex
lude a move from the table ba
k to thetable or a move on top of something and then immediately to the table: blo
k(X);time(T);moveop(X; table; T);on(X; table; T) nextstate(T2; T1);blo
k(X);obje
t(Y);moveop(X;Y; T1);moveop(X; table; T2)23

For a program
onstru
ted like this it holds that the program has a stable model i� thereis a sequen
e of moves from the initial
on�guration to a situation satisfying the goal
onditions that
an be exe
uted
on
urrently in at most n steps. Note that a stable modelprovides dire
tly a valid plan with the fa
ts of the form moveop(x; y; t) true in the model.A plan
an be built just by arranging the fa
ts in the order given by the situation argumentt. A valid sequential plan is obtained from this by arranging fa
ts with the same situationargument in any linear order.The expressivity of logi
 program rules is exploited, e.g., in representing frame axiomsand blo
king
onditions. A very
ompa
t representation is obtained with ni
e modular-ity properties, e.g., updating the representation with new blo
ks or operators is fairlystraightforward.8 ImplementationThere is a C++ implementation of LPSM
alled Smodels [29, 30℄ whi
h implements thestable model semanti
s for range restri
ted fun
tion-free normal programs. It in
ludes twomodules: (i) smodels whi
h implements LPSM for ground programs and (ii) parse whi
his the grounding pro
edure for smodels. We have developed a new grounding pro
edure,lparse, for the Smodels system whi
h is based on domain restri
ted programs withnon-re
ursive domains. The user does not need to expli
ate the domain predi
ates butlparse dete
ts them automati
ally by using the dependen
y graph for the program to �ndall non-re
ursively de�ned predi
ates. The ground instan
es of these predi
ates are then
omputed eÆ
iently using database te
hniques. The more restri
ted
lass of programshandled by lparse enables it to work substantially more eÆ
iently than parse be
auseof the use of database te
hniques and be
ause it is able to generate the ground instan
esof a rule independently of other rules. Furthermore, it in
ludes built-in predi
ates andfun
tions for integer arithmeti
. More details about the implementation te
hniques oflparse and its performan
e
ompared to parse and the dlv system
an be found in [35℄.The implementation of the stable model semanti
s for ground programs in the Smodelssystem is based on bottom-up ba
ktra
king sear
h where the sear
h spa
e for stable modelsis pruned eÆ
iently by exploiting the minimality and groundedness properties of stablemodels. This is based on an approximation te
hnique for stable models whi
h is
loselyrelated to the well-founded semanti
s [37℄. The same approximation te
hnique is employedin a powerful dynami
 sear
h heuristi
s.One of the underlying ideas in the implementation is that stable models are
hara
terized interms of their so-
alled full sets, i.e., their
omplements with respe
t to the negative atomsin the program (negative atoms in the program for whi
h the
orresponding positive atomsare not in
luded in the stable model) [28, 29℄. This
hara
terization, whi
h follows from theminimality and groundedness properties of stable models, implies that only negative bodyliterals
ontribute to the size of the potential sear
h spa
e and not all atoms in the program.Hen
e, it is possible to employ new de�ned atoms without
ompromising eÆ
ien
y, e.g.,in order to a
hieve a
learer or more su

in
t representation of a problem. By the fullset
hara
terization it is
lear that atoms whi
h appear only positively in the bodies donot in
rease the potential sear
h spa
e but this seems to hold also for other atoms, e.g.,having strati�ed de�nitions. This is di�erent from, e.g., propositional logi
 where ea
hnew atom potentially doubles the initial sear
h spa
e for models whi
h is why the use24

www.manaraa.com

of new de�ned atoms is typi
ally avoided when applying propositional logi
. Hen
e, it is
on
eivable that the possibility to use new de�ned atoms without
omputational overheadin LPSM
an lead to
ompa
t representations with attra
tive
omputational properties
omparing favorable to formulations in
lassi
al logi
. However, it is hard to
omparerepresentations of the same problem in di�erent frameworks and more work is needed todetermine how mu
h
an be gained in a
tual appli
ations.One of the advantages of the implementation method is that it has linear spa
e require-ments. This makes it possible to apply the stable model semanti
s also in areas whereresulting programs are highly non-strati�ed and
an possess a large number of stablemodels. See [29, 30, 33℄, for more detailed information on the implementation te
hniques.Smodels has turned out to be signi�
antly more eÆ
ient than other re
ent implementa-tions of the stable model semanti
s (e.g. [2, 7, 34, 11℄) and it is the �rst system that
anhandle highly non-strati�ed programs with tens of thousands of ground rules.AvailabilityThe Smodels system is freely available at http://www.t
s.hut.fi/pub/smodels/ .Do
umentation and an extensive set of test
ases
an be obtained from the same lo
ation.In order to make use of the system you will need a C++
ompiler and other standardtools su
h as make and tar. The system has been developed under Linux and should workas is on any platform having the appropriate GNU tools installed.9 Experimental ResultsIn order to provide a
avor of the performan
e of the system we report some resultson CSPs,
ombinatorial graph problems and blo
ks world planning using the domainrestri
ted programs des
ribed in previous se
tions. Table 1
ontains results on standardCSPs.Table 2 presents results on
ombinatorial graph problems. As test graphs we have usedrandom planar graphs whi
h are
onstru
ted by Delaunay triangulation of randomly in-serted points in a plane. Here the plane fun
tion found in the Stanford GraphBase [23℄has been used. For example, p1000 means a random planar graph with 1000 verti
es.Table 3
ontains results on experiments involving
hallenging blo
ks world examples. We
onsider three test
ases:� large.
 is a 15 blo
ks problem whi
h is already diÆ
ult for advan
ed domain inde-pendent planners su
h as Graphplan [3℄,� large.d is a 17 blo
ks problem and� large.e a 19 blo
ks problem.We translate the examples to logi
 programs as des
ribed in Se
tion 7. Table 3
ontainstwo entries for ea
h problem: one reporting the time needed to �nd a valid plan withthe \optimal" number of situations given as input and one reporting the time needed toshow optimality, i.e., that no plan (no stable model) exists when the number of situation25

Table 1: Experimental results on standard
onstraint satisfa
tion problems.Problem Solutions Time (s)Pigeon 6/6 720 0.8Pigeon 8/7 0 4.6Pigeon 9/8 0 42.3Queens 8 92 2.1Queens 10 724 39.1Queens 16 �rst 13.3Queens 18 �rst 103Queens 20 �rst 368S
hur 3/13 3 0.15S
hur 3/14 0 0.13S
hur 4/42 �rst 4.9S
hur 4/43 �rst 5.2S
hur 4/44 �rst 865S
hur 4/44 273 4650S
hur 4/45 0 6110

Table 2: Experimental results on
ombinatorial graph problems.Problem Graph Solutions Time (s)3-
ol p1000 0 3.33-
ol p3000 0 10.13-
ol p6000 0 20.34-
ol p100 �rst 1.54-
ol p300 �rst 13.14-
ol p600 �rst 51.1h
 p20 �rst 0.2h
 p25 �rst 11.9h
 p29 �rst 0.9h
 p30 �rst 131
26

www.manaraa.com

Table 3: Results for the blo
ks world examples.problem Number of Number of Time (s)steps ground ruleslarge.
 8 81682 23.27 72528 6.0large.d 9 128000 47.18 115110 11.5large.e 10 191622 1019 174100 17.3is de
reased by one. For example, for large.
, the available situations are t0; : : : ; t8 and,hen
e, the number of steps for applying operators is 8. This means that fa
ts time(t0) ; : : : ; time(t8) are given as a part of the program. For showing optimality the fa
ttime(t8) is removed.The time reported for ea
h test
ase is the sum of the exe
ution times of smodels andlparse given a program with variables as input. Exe
ution time was measured usingthe Unix time
ommand and it is the sum of user and system time. The time usedby lparse is usually small
ompared to the time needed by smodels, ex
ept when thenumber of ground rules is high. For example, for the largest planning example large.eit takes 11.5 s for lparse to generate the
orresponding ground program and for the3-
olorability problem for p6000 it takes 12.9 s to generate the
orresponding groundprogram with 161 839 rules. The tests were performed using smodels version 1.12 andlparse version 0.9.19 (beta) on a Pentium II 266MHz with 128MB of memory and theLinux 2.0.35 operating system. The test
ases are available at http://www.t
s.hut.fi/pub/smodels/tests/lp-
sp-tests.tar.gz.10 Con
lusionsWe put forward logi
 programs with the stable model semanti
s as an interesting
onstraintprogramming paradigm. The aim is to bring advantages of knowledge representation te
h-niques provided by logi
 programs to
onstraint programming in dynami
 domains su
has planning. However, the paradigm di�ers
onsiderably from the usual logi
 program-ming methodology whi
h is based on goal-dire
ted ba
kward
haining query evaluationand where variables stand for arbitrary terms providing re
ursive data stru
tures builtusing fun
tion symbols. In the novel paradigm fun
tion symbols are not allowed and therole of more
ompli
ated data stru
tures is played by the stable models. The idea is thata program is seen as a set of
onstraints des
ribing valid solutions to a problem and thestable models of the program
orrespond to the solutions satisfying the
onstraints.Implementation methods for the stable model semanti
s have advan
ed signi�
antly in re-
ent years. However, the most
ompetitive available methods for
omputing stable modelsare based on the idea of working with ground rules. Hen
e, for a program with variablesa grounding pro
edure is needed for generating a variable-free program. As a pra
ti
alsolution to handling the grounding problem we introdu
e a sub
lass of programs, do-main restri
ted programs, as a basis for developing eÆ
ient grounding pro
edures. It alsoprovides a framework for extending the paradigm with built-in predi
ates and fun
tions.27

We have taken the �rst steps towards a programming methodology for the new paradigmby presenting solutions to standard
onstraint satisfa
tion problems,
ombinatorial graphproblems and planning problems. The aim has been to devise solutions that have attra
-tive properties from a knowledge representation point of view. We are able to providemodular programs where the part of the program des
ribing the instan
e (e.g., the graphin question) is independent from the part
apturing the
onstraints for valid solutions(e.g.,
olorability
onditions). Furthermore, our programs provide
onstru
tive solutionsin the sense that a valid solution (e.g., an assignment of
olors to verti
es)
an be readdire
tly from a stable model of the program.We have developed an eÆ
ient implementation of the paradigm based on domain restri
tedprograms. This is an extension of a previous implementation of the stable model semanti
s,the Smodels system. In parti
ular, we have developed a new eÆ
ient grounding pro
edurefor Smodels whi
h is based on domain restri
ted programs with non-re
ursive domainsand whi
h in
ludes built-in fun
tions and predi
ates for integer arithmeti
. Test resultson CSPs, graph problems and planning are provided to illustrate the
urrent level ofperforman
e of our implementation. For example, for blo
ks world planning the results
ompare well with eÆ
ient domain-independent planners su
h as Graphplan.There are several interesting topi
s for further resear
h. In many appli
ations more ex-pressive rules
ould be useful, e.g. for representing general disjun
tive
onditions. Whatseems to be needed are
lassi
al in
lusive and ex
lusive disjun
tions instead of disjun
tionswith a minimal model interpretation studied intensively in the logi
 programming setting.An interesting question is whether su
h disjun
tions
an be in
orporated without in
reas-ing
omputational
omplexity substantially, i.e., whether key de
ision problems remain inNP for ground programs. Another interesting extension would be to asso
iate numeri
alweights and values to atoms in order to
apture, e.g., knapsa
k type of problems.%www a
knowledgementsA
knowledgementsThe author would like to thank the anonymous referees for their valuable
omments onthe paper and Tommi Syrj�anen for implementing the new grounding pro
edure, lparse.Referen
es[1℄ K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of de
larative knowledge. InJ. Minker, editor, Foundations of Dedu
tive Databases and Logi
 Programming, pages89{148. Morgan Kaufmann Publishers, Los Altos, 1988.[2℄ C. Bell, A. Nerode, R.T. Ng, and V.S. Subrahmanian. Mixed integer programmingmethods for
omputing nonmonotoni
 dedu
tive databases. Journal of the ACM,41(6):1178{1215, November 1994.[3℄ A.L. Blum and M.L. Furst. Fast planning through planning graph analysis. Arti�
ialIntelligen
e, 90:281{300, 1997. 28

www.manaraa.com

[4℄ Tom Bylander. Complexity results for planning. In Pro
eedings of the 12th Interna-tional Joint Conferen
e on Arti�
ial Intelligen
e, pages 274{279, Sydney, Australia,August 1991. Morgan Kaufmann Publishers.[5℄ Mar
o Cadoli and Luigi Palopoli. Cir
ums
ribing DATALOG: Expressive power and
omplexity. Theoreti
al Computer S
ien
e, 1{2:215{244, 1998.[6℄ Mar
o Cadoli, Luigi Palopoli, Andrea S
haerf, and Domeni
o Vasile. NP-SPEC: Anexe
utable spe
i�
ation language for solving all problems in NP. In Pro
eedings of theFirst International Workshop on Pra
ti
al Aspe
ts of De
larative Languages, pages16{30, San Antonio, Texas, January 1999. Springer-Verlag.[7℄ W. Chen and D.S. Warren. Computation of stable models and its integration withlogi
al query pro
essing. IEEE Transa
tions on Knowledge and Data Engineering,8(5):742{757, 1996.[8℄ W. Chen and D.S. Warren. Tabled evaluation with delaying for general logi
 pro-grams. Journal of the ACM, 43(1):20{74, 1996.[9℄ P. Cholewi�nski. Towards programming in default logi
. In Pro
eedings of the 9thInternational Symposium on Methodologies for Intelligent Systems, pages 223{232,Zakopane, Poland, June 1996. Springer-Verlag.[10℄ P. Cholewi�nski, V.W. Marek, A. Mikitiuk, and M. Trusz
zy�nski. Experimenting withnonmonotoni
 reasoning. In Pro
eedings of the 12th International Conferen
e on Logi
Programming, pages 267{281, Tokyo, June 1995.[11℄ P. Cholewi�nski, V.W. Marek, and M. Trusz
zy�nski. Default reasoning system DeReS.In Pro
eedings of the 5th International Conferen
e on Prin
iples of Knowledge Rep-resentation and Reasoning, pages 518{528, Cambridge, MA, USA, November 1996.Morgan Kaufmann Publishers.[12℄ J.M. Crawford and L.D. Auton. Experimental results on the
rossover point in random3-SAT. Arti�
ial Intelligen
e, 81(1):31{57, 1996.[13℄ Y. Dimopoulos, B. Nebel, and J. Koehler. En
oding planning problems in non-monotoni
 logi
 programs. In Pro
eedings of the Fourth European Conferen
e onPlanning, pages 169{181, Toulouse, Fran
e, September 1997. Springer-Verlag.[14℄ W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satis�abilityof propositional Horn formulae. Journal of Logi
 Programming, 3:267{284, 1984.[15℄ Thomas Eiter, Ni
ola Leone, Cristinel Mateis, Gerald Pfeifer, and Fran
es
o S
ar-nello. The KR system dlv: Progress report,
omparisons and ben
hmarks. In Pro-
eedings of the 6th International Conferen
e on Prin
iples of Knowledge Represen-tation and Reasoning, pages 406{417, Trento, Italy, June 1998. Morgan KaufmannPublishers.[16℄ C. Elkan. A rational re
onstru
tion of nonmonotoni
 truth maintenan
e systems.Arti�
ial Intelligen
e, 43:219{234, 1990.
29

[17℄ M. Gelfond and V. Lifs
hitz. The stable model semanti
s for logi
 programming. InPro
eedings of the 5th International Conferen
e on Logi
 Programming, pages 1070{1080, Seattle, USA, August 1988. The MIT Press.[18℄ M. Gelfond and V. Lifs
hitz. Logi
 programs with
lassi
al negation. In Pro
eedings ofthe 7th International Conferen
e on Logi
 Programming, pages 579{597, Jerusalem,Israel, June 1990. The MIT Press.[19℄ Mi
hael Gelfond and Vladimir Lifs
hitz. Representing a
tions and
hange by logi
programs. Journal of Logi
 Programming, 17:301{322, 1993.[20℄ K. Heljanko. Using logi
 programs with stable model semanti
s to solve deadlo
k andrea
hability problems for 1-safe Petri nets. In Pro
eedings of the 5th InternationalConferen
e on Tools and Algorithms for the Constru
tion and Analysis of Systems,pages 240{254, Amsterdam, the Netherlands, Mar
h 1999. Springer-Verlag.[21℄ Joxan Ja�ar and Jean-Louis Lassez. Constraint logi
 programming. In Mi
hael J.O'Donnell, editor, Conferen
e Re
ord of the 14th Annual ACM Symposium on Prin-
iples of Programming Languages, pages 111{119, Muni
h, FRG, January 1987. ACMPress.[22℄ A.C. Kakas and C. Mourlas. ACLP: Flexible solutions to
omplex problems. InPro
eedings of the 4th International Conferen
e on Logi
 Programming and Non-Monotoni
 Reasoning, pages 387{398, Dagstuhl, Germany, July 1997. Springer-Verlag.[23℄ D.E. Knuth. The Stanford GraphBase, 1993. Available at ftp://labrea.stanford.edu/.[24℄ Xinxin Liu, C.R. Ramakrishnan, and S
ott A. Smolka. Fully lo
al and eÆ
ient eval-uation of alternating �xed points. In Bernhard Ste�en, editor, Pro
eedings of the 4thInternational Conferen
e on Tools and Algorithms for the Constru
tion and Analysisof Systems, pages 5{19, Lisbon, Portugal, Mar
h/April 1998. Springer-Verlag.[25℄ W. Marek and M. Trusz
zy�nski. Autoepistemi
 logi
. Journal of the ACM, 38:588{619, 1991.[26℄ W. Marek and M. Trusz
zy�nski. Stable models and an alternative logi
 programmingparadigm. In The Logi
 Programming Paradigm: a 25-Year Perspe
tive, pages 375{398. Springer-Verlag, 1999. To appear.[27℄ R.C. Moore. Semanti
al
onsiderations on nonmonotoni
 logi
. Arti�
ial Intelligen
e,25:75{94, 1985.[28℄ I. Niemel�a. Towards eÆ
ient default reasoning. In Pro
eedings of the 14th Interna-tional Joint Conferen
e on Arti�
ial Intelligen
e, pages 312{318, Montreal, Canada,August 1995. Morgan Kaufmann Publishers.[29℄ I. Niemel�a and P. Simons. EÆ
ient implementation of the well-founded and sta-ble model semanti
s. In M. Maher, editor, Pro
eedings of the Joint InternationalConferen
e and Symposium on Logi
 Programming, pages 289{303, Bonn, Germany,September 1996. The MIT Press. 30

www.manaraa.com

[30℄ I. Niemel�a and P. Simons. Smodels { an implementation of the stable model and well-founded semanti
s for normal logi
 programs. In Pro
eedings of the 4th InternationalConferen
e on Logi
 Programming and Non-Monotoni
 Reasoning, pages 420{429,Dagstuhl, Germany, July 1997. Springer-Verlag.[31℄ R. Reiter. A logi
 for default reasoning. Arti�
ial Intelligen
e, 13:81{132, 1980.[32℄ K. Sagonas, T. Swift, and D.S. Warren. An abstra
t ma
hine for
omputing thewell-founded semanti
s. In M. Maher, editor, Pro
eedings of the Joint InternationalConferen
e and Symposium on Logi
 Programming, pages 274{288, Bonn, Germany,September 1996. The MIT Press.[33℄ P. Simons. Towards
onstraint satisfa
tion through logi
 programs and the stablemodel semanti
s. Resear
h report A47, Helsinki University of Te
hnology, Helsinki,Finland, August 1997. Available at http://www.t
s.hut.�/pub/reports/A47.ps.gz.[34℄ V.S. Subrahmanian, D. Nau, and C. Vago. WFS + bran
h and bound = stable models.IEEE Transa
tions on Knowledge and Data Engineering, 7(3):362{377, 1995.[35℄ T. Syrj�anen. Implementation of lo
al grounding for logi
 programs with stable modelsemanti
s. Te
hni
al report B18, Helsinki University of Te
hnology, Digital SystemsLaboratory, Espoo, Finland, O
tober 1998. Available at http://www.t
s.hut.�/pub/reports/B18.ps.gz.[36℄ M.H. van Emden and R.A. Kowalski. The semanti
s of predi
ate logi
 as a program-ming language. Journal of the ACM, 23:733{742, 1976.[37℄ A. Van Gelder, K.A. Ross, and J.S. S
hlipf. The well-founded semanti
s for generallogi
 programs. Journal of the ACM, 38(3):620{650, July 1991.[38℄ J.-H. You, R. Cartwright, and M. Li. Iterative belief revision in extended logi
 pro-gramming. Theoreti
al Computer S
ien
e, 170:383{406, 1996.
31

