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Logi Programs with Stable Model Semantis as a ConstraintProgramming Paradigm�Ilkka Niemel�aHelsinki University of TehnologyDepartment of Computer Siene and EngineeringLaboratory for Theoretial Computer SieneP.O. Box 5400, FIN-02015 HUT, FinlandIlkka.Niemela�hut.fihttp://www.ts.hut.fi/~iniAbstratLogi programming with the stable model semantis is put forward as a novel on-straint programming paradigm. This paradigm is interesting beause it bring advan-tages of logi programming based knowledge representation tehniques to onstraintprogramming and beause implementation methods for the stable model semantisfor ground (variable-free) programs have advaned signi�antly in reent years. Fora program with variables these methods need a grounding proedure for generatinga variable-free program. As a pratial approah to handling the grounding prob-lem a sublass of logi programs, domain restrited programs, is proposed. Thissublass enables eÆient grounding proedures and serves as a basis for integratingbuilt-in prediates and funtions often needed in appliations. It is shown that thenovel paradigm embeds lassial logial satis�ability and standard (�nite domain) on-straint satisfation problems but seems to provide a more expressive framework froma knowledge representation point of view. The �rst steps towards a programmingmethodology for the new paradigm are taken by presenting solutions to standard on-straint satisfation problems, ombinatorial graph problems and planning problems.An eÆient implementation of the paradigm based on domain restrited programs hasbeen developed. This is an extension of a previous implementation of the stable modelsemantis, the Smodels system, and is publily available. It ontains, e.g., built-ininteger arithmeti integrated to stable model omputation. The implementation isdesribed briey and some test results illustrating the urrent level of performaneare reported.1 IntrodutionWe put forward logi programs with the stable model semantis (LPSM) as an interestingonstraint programming paradigm. The goal is to bring advantages of logi programmingbased knowledge representation tehniques to onstraint programming. These tehniques�This is an extended version of a paper presented at the Workshop on Computational Aspets ofNonmonotoni Reasoning, Trento, Italy, May 30-June 1, 1998. The work has been supported by theAademy of Finland through Projet 43963. 1

seem partiularly useful in dynami domains (suh as planning) where, e.g., the frameproblem and the quali�ation problem emerge. The underlying idea in this paradigm isto interpret the rules of a program as onstraints on a solution set for the program. Asolution set is a set of atoms and a logi program rule of the formA B1; : : : ; Bm;not C1; : : : ;not Cn (1)is seen as a onstraint on this set stating that if B1; : : : ; Bm are in the solution set and noneof C1; : : : ; Cn are inluded, then A must be inluded in the set. A very natural de�nitionfor the solution sets is provided by stable models [17℄ whih form one of the leading delar-ative semantis of logi programs. However, a logi programming system supporting theonstraint interpretation of rules is very di�erent from typial logi programming systems,suh as Prolog implementations. Given a program the main task of suh a system is toompute solution sets, i.e. stable models, for the program. This di�ers substantially fromthe usual logi programming paradigm whih builds on goal-direted bakward hainingquery evaluation where the task of the system is to ompute for a given query a yes/noanswer or more generally an answer substitution.The integration of onstraints and logi programming has been studied previously mainlyfrom the point of view of extending Prolog style goal-direted implementation tehniquesby allowing, e.g., arithmeti or �nite domain onstraints in the rules and by integratingthe neessary onstraint solvers into a logi programming system. This onstraint logiprogramming paradigm [21℄ has been extended to inlude nonmonotoni reasoning a-pabilities suh as abdution [22℄. However, the onstraint logi programming paradigmdi�ers signi�antly from our approah where the rules have a delarative semantis andan be understood themselves as onstraints. Hene in our paradigm, rules an be useddiretly for expressing onstraints without extending the language to allow onstraint ex-pressions in the rules. Reently, similar ideas on employing rules as a methodology forexpressing onstraints apturing many kinds of problems suh as ombinatorial problems,graph problems and diagnosis, have been presented [10, 11, 15, 5, 6℄. Espeially lose toour approah is the proposal put forward independently by Marek and Truszzy�nski [26℄ touse stable models as an alternative basis for logi programming where rules are interpretedas onstraints in the same way as in our approah.The novel onstraint programming paradigm based on stable models is beoming inreas-ingly interesting for pratial purposes as implementations of the stable model semantishave advaned signi�antly in reent years. A number of new methods for omputingstable models have been developed, e.g. [2, 7, 11, 29, 34℄, and the performane of theimplementations of these methods has progressed rapidly. For example, the Smodelssystem [29℄ has provided quite enouraging results in many appliation areas. Reasonablylarge ombinatorial problems (e.g., graph olorings and Hamiltonian iruits) have beensolved using the system [29, 30℄. It is able to handle omputationally hard propositionalsatis�ability problems, e.g., random 3-SAT problems in the phase transition region [12℄having around 250 variables. See, [33℄, for a omparison of Smodels and Crawford'stableau system [12℄ whih is an eÆient implementation of the Davis-Putnam methodfor deiding propositional satis�ability. The Smodels system has been applied to theplanning domain [13℄ where it provides omparable and oasionally signi�antly betterperformane than eÆient general purpose planners suh as Graphplan [3℄. There is alsointeresting new work on applying Smodels in veri�ation of distributed systems. Forexample, it has been used with enouraging experimental results as a \�xed-point engine"2
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for implementing eÆient model heking algorithms for distributed systems [24℄ and asthe basi inferene engine in a partial-order veri�ation method for Petri nets [20℄.In this paper we aim to bring the novel paradigm yet another step loser to pratialappliations (i) by proposing a sublass of domain restrited programs as a basis for han-dling rules with variables and built-in prediates and funtions and (ii) by developingprogramming methodology for the novel paradigm.Rules with variables provide a ompat and easily maintainable knowledge representationmehanism whih is useful in many appliations. However, the most ompetitive availablemethods for omputing stable models, e.g. [2, 7, 11, 29, 34℄, are based on the idea of workingwith ground rules. This means that for a program with variables a grounding proedure isneeded for omputing a grounded program, i.e. a set of ground instanes of the program,whih is sound and omplete in the sense that the grounded program has exatly thesame stable models as the original program with variables. Clearly, implementing thegrounding proedure by generating the whole ground instantiation of the program leadsto unaeptable performane as the size of the ground instantiation an grow very fast.Some researh has already been done on eÆient grounding proedures. Cholewi�nski [9℄studies eÆient grounding in the ontext of default logi. The SLG system developedby Chen and Warren [7℄ handles query-answering in the stable model semantis for non-ground programs in the following way: a query is �rst evaluated with respet to the well-founded semantis using SLG resolution (see [8, 32℄) whih produes a residual programfor the subgoals that are relevant for the query. The residual program an be used foranswering the query with respet to the well-founded semantis. Given some restritionson the program, e.g. range restritedness, the residual program is ground and it anbe used for stable model omputations by employing one of the methods working onground programs. Combining SLG resolution and methods for ground programs o�ers aninteresting approah to query-answering in the stable model semantis. EÆient WAM-based implementations for SLG resolution suh as the XSB system [32℄ make this approaheven more attrative.For onstraint programming the use of SLG resolution is not unproblemati for two rea-sons. First, in real appliations the resulting ground programs might be large, e.g., ontain-ing more than 100 000 rules. This leads to eÆieny problems as urrent implementationtehniques for SLG resolution are not tuned for handling residual programs of this size.Seond, the use of the residual program an lead to unsound results: the stable modelsof the residual program do not neessarily orrespond to stable models of the originalprogram [7℄. The problem originates from the fat that SLG resolution is query-oriented,i.e., it works in a bakward haining way starting from an initial query, and the residualprogram ontains only rules that are relevant for the query in this bakward hainingsense. However, in onstraint programming we are looking for a solution that satis�esall the onstraints. In order to guarantee soundness we must hoose the initial query forSLG resolution arefully so that all onstraints are overed. Of ourse, a safe hoie isto onsider all prediates in the program but this ould lead to performane problems.Determining an initial query that ensures soundness but is not unneessarily large mightnot be trivial in all ases.Example 1 Consider a situation where we have a hoie between a and b and b leads to ahain of reasoning that an under some onditions, e.g., depending on other hoies, lead3

to a onit. So in a simpli�ed setting we ould have a set of rules of the forma not bb not a 1  b;not 02  1...n  n�10  n;not aWhen onsidering queries involving a and b in a bakward haining manner, the ruleson the right hand side are not relevant. So given that we are interested in a and b, wemight onlude that there are two solution sets, one ontaining a and one b. However, thesolution set ontaining b but not a does not satisfy the onstraints given by the rules onthe right hand side. Hene, in order to guarantee soundness for SLG resolution we shouldinlude in the initial query some i as well. Sometimes it is quite straightforward to deidewhat needs to be inluded in the initial query but one should be areful not to overlookany possibility.The soundness problem is avoided in the Smodels system [29℄ where the grounding pro-edure works bottom-up and handles range restrited programs in a sound and ompleteway. The grounding proedure seems to generate relatively small ground programs butdoes not appear to sale very well when the size of the generated ground program grows.The dlv system [15℄ implementing disjuntive stable model semantis has also an intel-ligent grounding proedure whih is sound. The test results in [15℄ indiate that thisgrounder sales better than the original grounder in the Smodels system.In this paper we propose a pratial approah to solving the grounding problem where thesublass of programs to be handled is restrited. We put forward a sublass of programs,domain restrited programs, for whih it is possible to devise eÆient grounding proeduresapable of handling eÆiently ases where the resulting ground programs ontain hundredsof thousands of rules and for whih the modeling apabilities are still satisfatory forpratial purposes. This sublass provides also a framework where external and built-inprediates and funtions an be straightforwardly integrated into the novel paradigm.We have implemented a new grounding proedure for the Smodels system based on do-main restrited programs with non-reursive domain de�nitions. It works muh more eÆ-iently than the original grounder in Smodels beause for non-reursive domains groundinstanes an be generated using eÆient database tehniques. The original groundingproedure in Smodels supports a wider lass of programs, range restrited ones, butthe di�erene does not seem to be signi�ant and, in pratie, range restrited rules anbe extended to domain restrited ones with little e�ort. We start the development of aprogramming methodology for the novel onstraint programming paradigm by workingthrough standard examples from onstraint satisfation, ombinatorial graph problemsand planning.The rest of the paper is organized as follows. First we explain the formal underpinnings ofthe new paradigm, the stable model semantis. Then we disuss rules with variables andintrodue the lass of domain restrited programs whih serves as a basis for implementingeÆient grounding proedures and for integrating built-in prediates and funtions. Weshow that traditional Boolean onstraints, i.e. propositional satis�ability, an be embed-ded in a simple way into logi programs with the stable model semantis (LPSM) and4
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argue that from a knowledge representation point of view LPSM is more expressive thanpropositional logi. We illustrate the use of LPSM by disussing examples from onstraintsatisfation problems, ombinatorial graph problems and planning. Finally we report onour work on implementing the paradigm and give some experimental results that illus-trate the urrent level of eÆieny of our implementation. We �nish with some onludingremarks.2 Stable Model SemantisIn this setion we formalize the onstraint interpretation of rules by giving a delarativesemantis for the solution sets in terms of stable models [17℄. We study �rst ground(variable-free) rules, i.e., rules where the atoms are variable-free atomi formulae. In thenext setion we show how the semantis generalizes to rules with variables.The starting point of the delarative semantis for solution sets is the intuitive reading ofa rule of the form (1) as a onstraint stating that if all the positive body literals Bi areinluded in the solution set and for eah negative body literal not Cj the atom Cj is notinluded, then the head of the rule A must be inluded in the solution set. However, thisreading does not apture all the important properties of solutions sets. In partiular, it isdesired that solution sets are minimal, i.e., a subset of a solution is no longer a solution.This means that, e.g., the program onsisting of the rule p  p has the empty set as itsunique solution set and that the set fpg is not a valid solution. Nonetheless, minimality isnot enough to apture the intended semantis. This an be seen by onsidering a programp pq  not pwhere fpg and fqg are minimal sets of atoms satisfying the intuitive reading of the rules.However, the set fpg is somehow irularly justi�ed: p is in the solution beause p is init! In appliations suh irularly grounded solutions are often unaeptable and the ideais to devise a semantis whih guarantees both minimality and strong groundedness ofthe solutions. This an be ahieved by de�ning solution sets as the stable models of theprogram.The stable model semantis [17℄ generalizes in an elegant way the minimal model semantisof de�nite programs [36℄ to the ase where negative body literals are allowed in the programrules. For a ground (variable-free) program P , the stable models are de�ned as follows.The redut P S of a program P with respet to a set of atoms S is the (de�nite) programobtained from P by deleting(i) eah rule that has a negative literal not C in its body with C 2 S and(ii) all negative literals in the bodies of the remaining rules.The redut P S an be seen as the set of potentially appliable rules given the stable modelS, i.e., as the rules where the negative body literals are satis�ed by the model. Note that inthe redut the negative body literals of the potentially appliable rules are removed and,hene, the rules are de�nite. The idea is to apture minimality and groundedness of astable model by requiring that every atom in the model is a onsequene of the potentially5

appliable rules given the model and every onsequene of the potentially appliable rulesis inluded in the model.For a de�nite program P we an de�ne a unique set of onsequenes Cl(P ) in variousequivalent ways. We an see the program as a set of inferene rules and then Cl(P ) isthe dedutive losure of the rules. On the other hand, a rule an be taken as a (de�nite)lause where the head is the positive literal and body literals are the negative literals ofthe lause. Then Cl(P ) is the unique minimal model of the lauses whih oinides withthe atomi logial onsequenes from the lauses.Example 2 Consider the de�nite program Pp q  pr  p; qt r; ss sNow Cl(P ) = fp; q; rg. In order to verify this we an onsider the program as a set ofinferene rules fp; pq ; p; qr ; r; st ; ssgand then Cl(P ) = fp; q; rg is the dedutive losure of the rules, i.e., the least set of atomslosed under the rules. The losure an be onstruted in a forward haining manner bystarting from the empty set and inluding a onsequene of a rule to the set if the premisesof the rule are already ontained in the set. For example, for the rules orresponding tothe program P , p is inluded �rst and then q followed by r. On the other hand, we ansee the program as a set of de�nite lausesfp; q _ :p; r _ :p _ :q; t _ :r _ :s; s _ :s; gand Cl(P ) = fp; q; rg is the unique (subset) minimal model of the lauses. Note that a setof atoms is the minimal model of a set of de�nite lauses i� (if and only if) it is the set ofatomi onsequenes from the lauses.De�nition 2.1 Let P be a ground (variable-free) program. Then a set of ground atomsS is a stable model of P i� S = Cl(P S).Hene, the stability of a model means that it an reprodue itself in the sense that it isthe �xed point of the operator �P (S) = Cl(P S).Example 3 Program P p not q; rq  not pr  not ss not p6
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has a stable model S = fr; pg beause the redut P S of P with respet to S isp rr  and S = Cl(P S). For instane, S0 = fp; sg is not a stable model of P beause the redutP S0 is fp  rg and its dedutive losure is fg 6= S0. In fat, P has another stable modelfs; qg.On the other hand, the program P 0 f 0  not f 0; ff  has no stable models. To see this, assume that P 0 has a stable model S. Then f 2 S. Iff 0 2 S, then the redut is ff  g and its losure does not inlude f 0. Hene, f 0 62 S butthen the redut is f 0  ff  whose losure ontains f 0. However, if we remove the seond rule, then the resultingprogram has a stable model fg.The de�nition of stable models aptures the two key properties of solution sets.� Stable models are minimal : a proper subset of a stable model is not a stable model.� Stable models are grounded : eah atom in a stable model has a justi�ation in termsof the program, i.e., it is derivable from the redut of the program with respet tothe model.As we saw above, a program an possess multiple stable models or none at all. Thede�nition of a stable model is non-onstrutive in the sense that it does not provide anydiret method for onstruting a stable model from a program. However, given a andidateset of atoms it an be heked in linear time whether it is a stable model of a program asthe unique minimal model of a set of de�nite lauses an be omputed in linear time [14℄. Ithas turned out that the problem of deiding whether a ground program has a stable modelis NP-omplete [25℄. The tehniques for omputing stable models for ground programshave advaned rapidly in reent years and now there are systems apable of omputingstable models for programs with tens of thousands of non-strati�ed rules.It should be notied that unlike models for lassial logi stable models have a nonmono-toni behavior, i.e., adding new rules an lead to new models. Consider, e.g., the programP 0 in Example 3 whih has no stable model. If we add a fat f 0  , then the resultingprogram has a unique stable model ff; f 0g. In fat, stable models are losely related toother formalizations of nonmonotoni reasoning. Their origins are in Moore's autoepis-temi logi [27℄ and logi programs an be seen as a speial ase of autoepistemi theorieswith the not operator treated as disbelief :L where L is the belief operator of autoepis-temi logi [17℄. Stable models have been shown to orrespond to other formalizations of7

nonmonotoni reasoning. For example, they oinide with the in and out sets omputedby a justi�ation-based truth maintenane system (TMS) when logi programming rulesare treated as justi�ations in a TMS [16℄. Furthermore, logi program rules an be seenas default rules in Reiter's default logi [31℄ and then stable models orrespond to defaultextensions [18℄.When using the rules as onstraints, often integrity onstraints, i.e., rules of the form B1; : : : ; Bm;not C1; : : : ;not Cn (2)are needed. These kinds of rules are straightforward to enode using ordinary rules.This an be done, for example, by introduing two new atoms f and f 0 and a new rulef 0  not f 0; f and �nally replaing every rule of the form (2) with one having f as itshead. Another approah ould be to inorporate the integrity onstraints to the semantisby de�ning that a set of atoms S is a stable model for a program P (possibly with integrityonstraints) i� S is a stable model for the ordinary rules in P and satis�es the integrityonstraints in P . A set of atoms S satis�es a onstraint of the form (2) i� it is not thease that fB1; : : : ; Bmg � S and fC1; : : : ; Cng \ S = ;.Example 4 Consider the program P in Example 3 extended by two integrity onstraints not p; s r;not q; sThis program has only one stable model fr; pg as the other stable model of P , fs; qg, doesnot satisfy the �rst integrity onstraint above.Integrity onstraints provide a powerful and simple to use onstraint programming teh-nique for pruning unwanted stable models as they annot introdue new stable modelsbut only an eliminate them.Proposition 2.2 Let P be a program and IC a set of integrity onstraints. Then if S isa stable model of P [ IC, then S is a stable model of P .3 Logi Programs with VariablesIn this setion we generalize the de�nition of solution sets (stable models) to programswith variables. Then we introdue a sublass of programs, domain restrited programs,as a basis for developing eÆient grounding proedures needed by urrent methods foromputing stable models whih work on ground rules. Finally we indiate how this sublassprovides a framework for inorporating external and built-in prediates and funtions toour onstraint programming paradigm.The stable model semantis for ground programs presented in the previous setion an beextended straightforwardly to programs with variables by employing the notion of Her-brand models. For a program, its Herbrand universe is the set of ground terms onstrutedfrom the onstants and funtions in the program and its Herbrand base is the set of atomiground formulae built from the Herbrand universe and the prediate symbols of the pro-gram. A Herbrand model is a subset of the Herbrand base. Notie that the Herbrandbase of a �nite program is �nite i� the program ontains no funtion symbols.8
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De�nition 3.1 For a non-ground program P , the stable models of P are those of theground instantiation PH of P with respet to its Herbrand universe.Beause PH is the set of ground rules obtained from the rules in P by replaing variables inthe rules by ground terms given in the Herbrand universe of P , stable models are Herbrandmodels of the program, i.e., subsets of its Herbrand base.Example 5 In this paper we use a logi programming onvention that the terms beginningwith a apital letter are variables. Consider the program Pd1(a) d1(b) d1() s(X;Y;Z) d1(X); d2(Y ); d3(Z);not d3(X)s(X;X;X)  d1(X)Its Herbrand universe is fa; b; g and Herbrand base isfd1(a); d1(b); d1(); d2(a); d2(b); : : : ; s(b; ; ); s(; ; )g:The ground instantiation of the program with respet to its Herbrand universe has 33rules d1(a) d1(b) d1() s(a; a; a) d1(a); d2(a); d3(a);not d3(a)s(a; a; b) d1(a); d2(a); d3(b);not d3(a)...s(; ; ) d1()and it has a unique stable model fd1(a); d1(b); d1(); s(a; a; a); s(b; b; b); s(; ; )g.The role of variables in the new onstraint programming approah is di�erent from thatin the usual Prolog style logi programming paradigm where variables stand for arbitraryterms providing reursive data strutures built using funtion symbols. Here the idea isto keep the basi deision problems deidable and, thus, to avoid funtion symbols. Therole of more ompliated data strutures is played by the stable models.Hene, we are onsidering funtion-free programs whose Herbrand universe is always �niteand thus the ground instantiation of the program is �nite, too. Notie, however, that theground instantiation an be very large ompared to the original program. An upper boundon the size of the ground instantiation is rv where r is the number of rules and  thenumber of onstants in the program and v is the upper bound on the number of distintvariables in any rule of the program. When implementing stable model omputation forprograms with variables the size of the ground instantiation may beome problematibeause the most ompetitive available methods for omputing stable models, e.g. [2, 7,9

11, 29, 34℄, are based on the idea of working with ground rules. Clearly, the approah wherethe whole ground instantiation of the program is omputed �rst and stable models areomputed from the ground instantiation an lead to very big overheads and unaeptableperformane.Example 6 Consider the program P in Example 5. The ground instantiation of P has33 rules of whih learly the 27 ground rules related to the fourth rule do not ontributeto the stable models of P .Next we present a tehnique for handling the grounding problem in a way whih worksfairly eÆiently in pratie. Our idea is to restrit the lass of programs so that a soundand omplete subset of the ground instantiation an be omputed eÆiently. Soundnessand ompleteness means that the subset has exatly the same stable models as the wholeground instantiation (and thus the original program).We restrit the programs by requiring that every variable in a rule appears in some domainprediate for whih it is easy to determine whih of its ground instanes are in the stablemodels of the original program. If the relevant ground instanes of the domain prediatesin a rule are easy to determine, then the relevant ground instanes of the rule an beomputed eÆiently one rule at a time. In the following we make these ideas more preise.First we de�ne the lass of domain restrited logi programs.De�nition 3.2 A logi program P is domain restrited for a set of prediates D if foreah rule in P it holds that every variable in the rule appears also in a positive body literalof the rule for whih the prediate is from D.Notie that a domain restrited program is also a range restrited one, i.e., if a variableappears in a rule it also appears in some positive body literal in the same rule. The extraondition here is that the positive literal must be a domain prediate from a given set.For example, the program P in Example 5 is domain restrited for fd1; d2; d3g but not forfd1; d2g.De�nition 3.3 Let P be a logi program that is domain restrited with respet to D and^D a set of ground instanes of prediates in D. We de�ne the program P ^D as the set ofground instanes of the rules in P suh that eah positive body literal with a prediate fromD belongs to ^D.Example 7 Consider the program P in Example 5 and set D = fd1; d2; d3g. For ^D =fd1(a); d2(a); d3(a); d3(b)g, P ^D isd1(a) d1(b) d1() s(a; a; a) d1(a); d2(a); d3(a);not d3(a)s(a; a; b) d1(a); d2(a); d3(b);not d3(a)s(a; a; a) d1(a)10
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The next problem is to determine when a set of ground instanes ^D of the domain pred-iates is suÆient in the sense that P and P ^D have exatly the same stable models. Forthat we de�ne a notion of ompleteness.De�nition 3.4 Let P be a logi program that is domain restrited with respet to D and^D a set of ground instanes of prediates in D. Then ^D is omplete for P i� for eahground instane ^d of a prediate d 2 D it holds that (i) if ^d is in some stable model of P ,then ^d 2 ^D and (ii) if ^d is in some stable model of P ^D, then ^d 2 ^D.A omplete set of ground instanes is suÆient as shown by the following theorem.Theorem 3.5 Let P be a domain restrited logi program with respet to D and ^D asubset of ground instanes of prediates in D with respet to the Herbrand universe of Psuh that ^D is omplete for P . Then P and P ^D have the same stable models.Proof. Let PH be the ground instantiation of P with respet to its Herbrand universeand let S be a stable model of P , i.e., S = Cl(P SH). We show that S is a stable model ofP ^D, i.e., that S = Cl(P S^D) holds by establishingCl(P SH) = Cl(P S^D): (3)(�) Clearly, P ^D � PH , hene P S^D � P SH and thus Cl(P S^D) � Cl(P SH) by the monotoniityof Cl. (�) Let a 2 Cl(P SH). Taking the rules in P SH as inferene rules, this means thatthere is a proof a0; a1; : : : ; an = a where for eah ai, there is a rule ai  b1; :::; bm 2 P SHsuh that eah bl is some aj with j < i. We show that for all i = 0; 1; : : : ; n, ai 2 Cl(P S^D)by indution on i. Clearly, a0 is a fat in the program P whih annot ontain variablesas the program is domain restrited. Hene, a0  2 P ^D and a0 2 Cl(P S^D). Assume thatthere is a proof a0; a1; : : : ; ai. Hene, there is a rule r of the form ai  b1; :::; bm 2 P SHsuh that eah bl is some aj with j < i. By the indution hypothesis, eah bl 2 Cl(P S^D).We show that r 2 P S^D holds whih implies ai 2 Cl(P S^D). As r 2 P SH , there is rule r0 2 Psuh that r is obtained from r0 by replaing the variables of r0 by ground terms and thenremoving the negative body literals. For eah domain prediate d in r0, there is a groundinstane bj in r. But as eah suh ground instane bj belongs to the stable model S ofP , then by the property (i) for a omplete set of ground instanes ^D, bj 2 ^D and, hene,r 2 P S^D. Thus, we have shown that a 2 Cl(P SH) implies a 2 Cl(P S^D). Hene, (3) holds.Similarly, we an show that a stable model of P ^D is a stable model of P by using theproperty (ii) of a omplete set of ground instanes.Example 8 It is not very hard to ome up with omplete sets of ground instanes ofthe domain prediates under some restritions on the program. Below we provide a fewexamples:� If a program P is range restrited, then we an take D to be the set onsisting ofevery prediate appearing in a positive body literal and ^D to be the set inluding alltheir ground instanes. Now P ^D is the same as the ground instantiation of P and islearly omplete. 11

� Let a program P be domain restrited with respet to a set D of prediates whihappear in the head of a rule in P only if the rule is a fat. Now we an take as theset of ground instanes ^D the set of fats for the prediates from D in P . This setis omplete for P .� Let a program P be domain restrited with respet to a set of prediates D whihhave strati�ed [1℄ de�nitions in P depending only on prediates in D. Then aomplete set of ground instanes ^D is given by the unique stable model of the rulesrelevant to the prediates from D in P .

The idea is to employ the notion of domain restrited programs and Theorem 3.5 to �nda sublass of programs with satisfatory expressive power for appliations suh that thegrounding problem an still be solved eÆiently. Notie that when a omplete set of groundinstanes ^D has been omputed, then a suÆient set of ground instanes of the program,P ^D, an be produed very eÆiently by onsidering one rule of the original program at atime. Hene, the key question is to �nd a sublass of programs for whih a omplete setof ground instanes an be omputed eÆiently and the resulting set of ground rules isstill of manageable size.The last alternative in the example above, i.e., domain restrited programs with strati�eddomains, is a promising basis for handling the grounding problem. It allows an expressivelanguage for de�ning domain prediates, i.e., that of strati�ed programs, and it failitatesthe omputation of the ground program as the domain prediates an be evaluated sepa-rate from the rest of the program one stratum at a time starting from the lowest strata.Furthermore, with strati�ed domain prediates we an tighten the de�nition of the re-sulting ground program P ^D and exploit also the domain prediates in the negative bodyliterals. This means that without loosing ompleteness we an limit the ground instanesin P ^D to those where eah positive body literal with a prediate from D belongs to ^Dand where for eah negative body literal not C with a prediate from D, the atom C is notinluded in ^D. These properties make this sublass of programs more attrative than,e.g., range restrited programs. This is beause range restrited programs do not seemto share suh omputational advantages but do not o�er muh more modeling power toompensate the added omplexity of the grounding problem. Note that it an be eÆientlyheked whether a program is domain restrited with strati�ed domains. This an be doneby using the dependeny graph of the program [1℄ to determine the set of all prediatesD de�ned in a strati�ed way and then heking whether the program is domain restritedfor this set D.Strati�ed domain de�nitions allow also reursive de�nitions whih means that determiningthe omplete set of ground instanes for the domain prediates involves reursive queryevaluation tehniques. It is not straightforward to obtain good performane when eval-uating reursive rules and further ompliations arise as we aim to inorporate built-inprediates and funtions in the domain de�nitions.In order to irumvent these diÆulties we are putting forward a sublass that we alldomain restrited programs with non-reursive domains. This is a sublass of programswith strati�ed domains where the domain prediates have strati�ed but non-reursive12
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de�nitions in the program depending only on other domain prediates. This means that,e.g., the transitive losure t of a domain prediate rel given by the rulest(X;Y ) rel(X;Y )t(X;Y ) rel(X;Z); t(Z; Y )annot serve as a further domain prediate in this restrited sublass although it anwhen general strati�ed domains are allowed. Notie that the seond rule is not domainrestrited as t annot at as a domain prediate. In order to transform the rule to adomain restrited one, a new domain prediate for the variable Y needs to be added. Astraightforward way to de�ne suh a domain prediate d is to use a rule d(Y ) rel(X;Y ).This sublass is an interesting ompromise: (i) Non-reursive domain prediates allow afair amount of modeling power orresponding to view de�nitions in relational databases.Hene, new domain prediates an be de�ned from the basi ones using, e.g., unions,intersetions, di�erenes, projetions and joins. (ii) A omplete set of ground instanesfor suh a set of domain prediates an be omputed eÆiently using database tehniquesby evaluating the prediates one stratum at a time using database operations startingfrom the lowest strata. We demonstrate the expressivity of domain restrited programswith non-reursive domains by using this sublass in all the examples for the rest of thepaper.We end this setion by pointing out that the notion of domain restrited programs withnon-reursive domains provides a simple framework where di�erent kinds of external andbuilt-in prediates an be easily inorporated to rule bodies. This is beause diÆult se-mantial issues related to oundering are avoided and the evaluation of built-in prediatesand funtions is straightforward to integrate into the database tehniques for omputingthe omplete set of ground instanes for the domain prediates. The idea is that we allowin the rule bodies prediates and funtions that have their de�nitions given externally, e.g.,in a relational database or as a built-in proedure implemented in some other programminglanguage and use them to de�ne further domain prediates.Example 9 We illustrate the possibilities by an example of using built-in prediates andfuntions for integers. For example, we ould have a built-in prediateminus(X;Y;Z) or-responding to the set of fats minus(x; y; z) where x; y; z are integers suh that z = x� y.There is no need for this set of fats to be represented expliitly in the program and itould be implemented as an external proedure in some other programming language.For keeping the semantis lear it is enough to avoid oundering, i.e., a all to an ex-ternal proedure where the parameters have uninitialized values. This an happen whenan externally de�ned prediate has a variable as an argument and the range of groundterms over whih the variable an vary is not lear. Domain restrition eliminates suh apossibility.Coneptually there is no problem in inorporating also built-in funtions in the bodyliterals of rules as long as we avoid oundering. Hene, we ould have a built-in funtionminus(X;Y ) whih we ould use in the rule body. In what follows we use the usual in�xnotation for arithmeti funtions.The following shorthand is often handy for representing basi domains. We assume thata rule d(n::m)  stands for a set of fats d(n)  ; d(n + 1)  ; : : : ; d(m)  if n;m areintegers suh that n � m. 13

Using these kinds of onstrutions it is then fairly easy to represent many interestingproblems. We illustrate the ideas by a program that de�nes a (domain) prediate gridmodeling grid graphs where nodes are pairs of integers and ((i; j); (i0 ; j0)) is an edge i�ji� i0j+ jj � j0j = 1.So we are given some basi domain prediatesxdim(1::x) ydim(1::y) whih represent the dimensions of the grid graph where x and y are integers with x; y � 1.We de�ne the prediate grid(I; J; I 0; J 0) suh that ((I; J); (I 0; J 0)) is an edge in the gridgraph with dimension x; y as follows:grid(I; J; I 0; J 0)  xdim(I); ydim(J); xdim(I 0); ydim(J 0);abs(I � I 0) + abs(J � J 0) = 1:where abs is a built-in funtion suh that abs(x) = jxj. It should be notied that externalprediates and funtions an be used for de�ning new domain prediates in a non-reursivefashion without any semantial diÆulties as long as the program remains domain re-strited. For example, the prediate grid an be taken as a new non-reursively de�neddomain prediate, although it depends not only on previously de�ned domain prediatesxdim; ydim but also on built-in funtions and prediates `�', `+', `abs', `='. Hene, it anbe used for de�ning further domain prediates. For example, we ould ode a node (I; J)as a single integer X = (I � 1) � y + J and de�ne a orresponding graph for these nodesin terms of new domain prediates edge and vertex:edge(X;Y )  grid(I; J; I 0; J 0);X = (I � 1) � y + J; Y = (I 0 � 1) � y + J 0vertex(X)  edge(X;Y )vertex(Y )  edge(X;Y )4 Relation to Propositional Satis�abilityStable models are sets of atoms similar to propositional models. However, there are twosigni�ant di�erenes. Stable models are minimal and grounded. We show that despite thedi�erenes propositional satis�ability (SAT) an be easily redued to LPSM by employinga simple loal mapping. Then we argue that a similar loal mapping is not possible in thereverse diretion implying that LPSM is more expressive than propositional logi from aknowledge representation point of view.SAT an be mapped to LPSM by onstruting a ground logi program TrSAT(S) for a setof lauses S, for example, in the following straightforward way. (i) We introdue for eahatom a appearing in S two atoms a and ^a and inlude two rules^a not aa not ^a(ii) For eah lause in S, we introdue a new atom  and inlude one rule for eah literall in the lause as follows: if l is a positive atom a, take the rule   a and if l is thenegation of an atom a, add  ^a and (iii) �nally we inlude the rule  not .14
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Example 10 For a set of lauses S = fa _ :b;:a _ bgthe translation TrSAT(S) ontains the rules^a not aa not ^a^b not bb not ^b 1  a1  ^b not 1 2  ^a2  b not 2

You et al. [38℄ present a redution from propositional satis�ability to logi programs whihis based on similar ideas as the mapping above but they use as the target language ex-tended logi programs (with lassial negation) and study speial semantis developed forextended programs instead of the stable model semantis.Proposition 4.1 A set of lauses S has a model i� TrSAT(S) has a stable model.The proposition shows that propositional satis�ability an be redued to the problemof �nding a stable model. Note that a stable model of TrSAT(S) provides diretly apropositional model for the lauses S where atoms in the stable model are assigned trueand the rest of the atoms false (atoms a for whih ^a is in the stable model).Although it is lear from the omplexity results that the problem of �nding a stablemodel an be redued in polynomial time to a propositional satis�ability problem (asboth are NP-omplete problems), it is not obvious whether the two approahes are equallyexpressive from a knowledge representation point of view. In fat, there seems to be noway of mapping LPSM to SAT in a similar loal modular fashion as we embedded SAT toLPSM above where small loal hanges in the input lauses lead to small loal hanges inthe orresponding logi program. Notie that our translation from SAT to LPSM is verymodular as eah lause an be translated to a set of rules independently of other lauses.We an show that suh a mapping in the reverse diretion is not possible even under mildassumptions on the notion of modularity. Consider, e.g., a notion of modularity wherea mapping T(�) from logi programs to propositional lauses is said to be modular if forany program P , for eah set of atomi fats F , P [ F has a stable model i� F [ T(P )is satis�able. The intuition here is that for a modular mapping, adding an atom to theprogram should lead to a loal hange not involving the translation of the rest of theprogram.Proposition 4.2 There is no modular mapping from logi programs to lauses.Proof. Consider a program P = fp  not pg. Assume that T(�) is a modular mapping.Then as P has no stable models, T(P ) is unsatis�able. But then fpg[T(P ) is unsatis�able.This implies that P [ fp g has no stable model whih is learly not the ase. Hene, nomodular mapping exists. 15

We �nish the setion by disussing the impliations of the results to the relative knowl-edge representation apabilities of propositional logi and LPSM. The modular mappingfrom SAT to LPSM indiates that whenever there is a natural representation of (somepart of) a domain using propositional logi, this an be used almost diretly in the frame-work of LPSM with small overhead through, e.g., the mapping above. Notie that theoverhead aused by the introdution of an extra atom ^a for eah propositional atom a isnot signi�ant beause the state of the art implementations of stable model omputationpropagate the rules eÆiently in both diretions and an determine the other atom im-mediately whenever one of a; ^a beomes determined. Hene, the struture of the searhspae for propositional models of a set of lauses is similar to that for stable models of theorresponding set of rules. Also maintaining suh a representation as rules is omparableto maintenane of the propositional representation beause small hanges in the lausalrepresentation lead to small loal hanges in the orresponding rule set.The last proposition implies that there ould be situations having a natural representationin LPSM but not when employing propositional logi in the sense that even simple updateslike adding a new fat ould lead to non-loal hanges in the propositional representationof the situation. In partiular, this seems to hold in dynami situations where, e.g., theframe problem and the quali�ation problem have to be addressed. Hene, the results inthis setion seem to strongly suggest that LPSM provides a more expressive knowledgerepresentation framework than lassial propositional logi.Another signi�ant di�erene between SAT and LPSM is in the struture of the searhspaes where the minimality and groundedness properties of stable models appear toprovide interesting omputational advantages. We return to this point in Setion 8.5 Relation to Constraint Satisfation ProblemsIn the previous setion we showed that Boolean onstraints an be embedded into LPSMusing a simple loal translation but that a similar loal translation in the reverse diretion isnot possible. More general forms of onstraints seem to have similar problems in apturingstable models but the other diretion is still fairly straightforward. We demonstrate thisby outlining a simple loal mapping of onstraint satisfation problems (CSPs) to LPSM.Then we disuss some standard problems from the CSP literature.A CSP onsists of a set of variables with �nite domains and a set of onstraints. Eahonstraint spei�es a set of allowed ombinations of variables and values. A solution to theCSP is an assignment of values to variables suh that eah variable has exatly one valuefrom its domain and all onstraints are satis�ed, i.e., for eah onstraint the assignmentagrees with an allowed ombination in the onstraint. It is straightforward to representsuh a problem using rules.� For eah domain value  in the CSP we adopt a onstant .� For eah domain d in the CSP we adopt a one-plae prediate d and a set of fatsd(1) ; : : : ; d(n) where 1; : : : ; n are the possible values of the domain d.� For eah variable v with the domain d in the CSP we adopt one-plae prediates vand ov and two rules v(X) d(X);not ov(X)16
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ov(X) d(X); d(Y ); v(Y );X 6= Ywhere the prediate ov(X) models the fat that the variable v has some other valuethan X.� For eah onstraint o giving a set of allowed value ombinations for a set of variablesv1; : : : ; vj we take the fat onstraint(o) and for eah allowed value ombinationv1 = 1; : : : vj = j a rule sat(o) v1(1); : : : ; vj(j)and �nally a rule  onstraint(C);not sat(C):stating that eah onstraint C must be satis�ed.Hene, a CSP an be represented in LPSM in a very straightforward and easily main-tainable way. For example, adding a new domain value  to the domain d an be donejust by adding the orresponding fat d()  . Sometimes onstraints in a CSP are givenin terms of disallowed ombinations of values to variables. These kinds of onstraintsare also straightforward to represent with rules. For example, a disallowed ombinationv1 = 1; : : : vj = j an be aptured with a rule v1(1); : : : ; vj(j):5.1 ExamplesConstraints often have a very natural representation diretly as logi program rules. Weillustrate this using a few standard examples from the CSP literature.Pigeon: Put N pigeons into M holes so that there is at most one pigeon in a hole.This problem an be solved with the following programpos(P;H) pigeon(P ); hole(H);not negpos(P;H)negpos(P;H) pigeon(P ); hole(H);not pos(P;H) pigeon(P ); hole(H); hole(H 0); pos(P;H); pos(P;H 0);H 6= H 0 pigeon(P );not hashole(P )hashole(P ) pigeon(P ); hole(H); pos(P;H) pigeon(P ); pigeon(P 0); hole(H); pos(P;H); pos(P 0;H); P 6= P 0where the domain prediates hole and pigeon give the available holes and pigeons.The idea is that pos(p; h) gives a legal position of pigeon p in hole h. For eah holeh and pigeon p, pos(p; h) is modeled as a `two-valued' atom, i.e., every stable modelontains either it or its `omplement' negpos(p; h). For representing the neessaryonstraints we use the tehnique based on integrity onstraints for eliminating stablemodels not orresponding to valid assignments of pigeons to holes as follows. The�rst two rules establish the two-valued harater of pos and provide the andidatestable models. The rest of the rules prune this set of models. The third rule is an17

integrity onstraint stating that a pigeon annot be in two holes and the followingtwo rules that a pigeon must be in at least one hole. Note that we employ a new\de�ned" prediate hashole for representing the onstraint. Suh de�ned prediatesappearing in integrity onstraints do not introdue new stable models. The last rulesays that there annot be two pigeons in the same hole. The resulting program hasa stable model i� the pigeon problem has a solution and a solution an be read fromthe stable model S as follows: pos(p; h) 2 S i� pigeon p is in hole h in the solution.Queens: Plae n queens on an n � n board so that no queen heks against any otherqueen.This problem an be handled using the following programq(X;Y ) d(X); d(Y );not negq(X;Y )negq(X;Y ) d(X); d(Y );not q(X;Y ) d(X); d(Y ); d(X 0); q(X;Y ); q(X 0; Y );X 0 6= X d(X); d(Y ); d(Y 0); q(X;Y ); q(X;Y 0); Y 0 6= Y d(X); d(Y ); d(X 0); d(Y 0); q(X;Y ); q(X 0; Y 0);X 6= X 0; Y 6= Y 0;abs(X �X 0) = abs(Y � Y 0) d(X);not hasq(X)hasq(X) d(X); d(Y ); q(X;Y )where the domain prediate d provides the dimension of the board, i.e., d(1::n) isinluded in the program. The idea is that q(x; y) gives a legal position of a queen andit is again modeled as a `two-valued' atom using the �rst two rules. The integrityonstraint based tehnique is used for eliminating non-valid solutions. The thirdrule says that there annot be two queens in the same row, the fourth eliminates twoqueens in the same olumn and the �fth two queens in the same diagonal. The lasttwo rules say that there must be a queen in eah olumn. Notie that in a problemlike this (integer) arithmeti enables very ompat representation of onstraints asexempli�ed by the �fth rule. The resulting program has a stable model i� the queensproblem has a solution and a solution an be read from the stable model S as follows:q(x; y) 2 S i� (x; y) is a legal position for a queen on the board.Shur: Partition the integers N = f1; 2; :::; ng into b boxes suh that for any x; y 2 N , (i)x and 2x are in di�erent boxes and (ii) if x and y are in the same box, then x+ y isin a di�erent box.This problem an be solved using the following programpos(X;B) n(X); b(B);not negpos(X;B)negpos(X;B) n(X); b(B);not pos(X;B) n(X); b(B); b(B0); pos(X;B); pos(X;B0); B 6= B0 n(X);not hasbox(X)hasbox(X) n(X); b(B); pos(X;B) n(X); b(B); pos(X;B); pos(2 �X;B) n(X); n(Y ); b(B); pos(X;B); pos(Y;B); pos(X + Y;B)18
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where the set of integers is given by the domain prediate n, the boxes by theprediate b and pos(x; y) means that the integer x an be put in a box y. Again weuse a ombination of the `two-valued' modeling tehnique and integrity onstraintswhere the �rst �ve rules speify the two-valued harater of pos and state that eahnumber an be in exatly one box. The last two rules orrespond diretly to theonditions (i) and (ii) above.Often ombinatorial problems and onstraint satisfation problems have a largeamount of symmetri solutions. By eliminating symmetries the searh spae of suha problem an be pruned onsiderably. In LPSM it is possible to do this delarativelywithout modifying the underlying searh proedure for stable models by adding newrules. We illustrate this with the program above that allows symmetri solutionswhere the boxes are permuted. These an be eliminated by assuming a linear orderfor the boxes (naming them by integers) and by using the integrity onstraint basedtehnique leading to the following rules saying that for eah integer x we should usethe smallest available box, i.e., a box for whih no smaller box is free of integerssmaller than x. n(X); b(B); pos(X;B); b(B0); B0 < B;not oupied(X;B0)oupied(X;B)  n(X); b(B); n(Y ); Y < X; pos(Y;B)Here oupied(X;B) models the fat that there is some integer Y < X oupyingthe box B.6 Combinatorial Graph ProblemsIn this setion we demonstrate the appliability of LPSM to solving ombinatorial graphproblems by onsidering two typial problems: olorability and Hamiltonian iruits. Theidea is to illustrate the knowledge representation apabilities of rules and show that LPSMprovides a ompat and easily maintainable approah to desribing suh problems. Main-tainability means that the rules speifying the orret solutions are independent of thegraph under onsideration and, thus, the graph an be hanged without hanging otherparts of the program and similarly for important parameters for the problems, e.g., thenumber of available olors, whih an be altered without modifying any other part of theprogram.K-olorabilityFirst onsider the k-olorability problem, i.e., the problem of �nding an assignment ofone of k olors to eah vertex of a graph suh that verties onneted with an ar do nothave the same olor. This problem an be mapped to a stable model �nding problem asfollows. Assume that we have a database giving a graph in terms of atomi fats of theform vertex(v)  and ar(v; u)  and the available olors as fats ol()  . Then takethe program with the rules below.olor(V;C) vertex(V ); ol(C);not otherolor(V;C)otherolor(V;C) vertex(V ); ol(C); ol(D); C 6= D; olor(V;D) ar(V;U); ol(C); olor(V;C); olor(U;C)19

h(V;U) ar(V;U);not otherroute(V;U)otherroute(V;U) ar(V;U); ar(V;W ); h(V;W ); U 6=Wotherroute(V;U) ar(V;U); ar(W;U); h(W;U); V 6=Wreahed(U) ar(V;U); h(V;U); reahed(V );not initialnode(V )reahed(U) ar(V;U); h(V;U); initialnode(V ) vertex(V );not reahed(V )Figure 1: A program for Hamiltonian iruits.The �rst two rules demonstrate a knowledge representation tehnique based on rules withexeptions. The �rst rule says that vertex V has olor C unless there is some exeption(otherolor) and the seond rule spei�es the exeptions. This provides the andidatesolutions and the third rule eliminates those not orresponding to legal olorings. Theprogram has a stable model i� there is a k-oloring of the graph. Note that the mappingfrom olorability to LPSM is onstrutive in the sense that a k-oloring of the graph isdiretly obtained from a stable model by taking the fats of the form olor(v; ) that aretrue in the model.Hamiltonian iruitsAs an example of a problem whih is not straightforward to map to a onstraint satisfationproblem but whih has a natural oding in LPSM we onsider the Hamiltonian iruitproblem, i.e., the problem of �nding a path in a graph that visits eah vertex of the graphexatly one and returns to the starting vertex. Again assume that we have a databasegiving a graph in terms of atomi fats of the form vertex(v)  and ar(v; u)  . Weadd to the fats the rules in Figure 1 and take one of the verties v as the starting vertex(initialnode(v) is added). The idea is that a fat h(v; u) holds if the ar (v; u) belongsto the Hamiltonian iruit. The �rst three rules ensure that for eah node exatly oneinoming and outgoing ar belong to the path. Here we employ rules with exeptions again.The �rst rule says that an ar belongs to the iruit if there is no exeption, i.e., no otherroute between the two nodes. The last three rules state that the path forms a yle whihvisits all nodes and returns to the initial node. By exploiting the groundedness propertyof stable models the notion of a path forming a yle an be aptured in a ompat wayusing a de�ned prediate reahed and an integrity onstraint. This leads to an easilymaintainable representation where, e.g., the graph an be hanged without hanging therules desribing the onditions on the iruit. The resulting program has a stable model i�the graph has a Hamiltonian iruit. Note that the mapping from Hamiltonian iruits toLPSM is onstrutive in the sense that a iruit is diretly obtained from a stable modelby taking the fats of the form h(v; u) in the model.7 PlanningPlanning provides a partiularly interesting appliation area for nonmonotoni reasoningsystems suh as implementations of LPSM beause this is a domain from whih someof the main motivation for developing nonmonotoni formalisms originates. In planningdiÆult issues related to reasoning about ation and hange suh as the frame problem have20
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to be addressed and the expressivity of the nonmonotoni formalisms an be utilized tooverome some of the diÆulties. We illustrate with a bloks world example how planningproblems an be mapped to logi programming rules. For more detailed aounts, we referthe reader, e.g., to [19, 13℄.In the bloks world we are given initial onditions onerning bloks on a table statinghow they are staked on top of eah other and similar goal onditions. The aim is togenerate a plan, i.e., a sequene of move operations starting from the initial on�gurationand leading to a on�guration where the goal onditions are satis�ed.Consider the following example. In the initial on�guration we have three bloks a; b; suh that b and  are on the table and a is on top of b. The goal onditions are that  ison a and b is on . A possible solution for this planning problem is a sequene of moveswhere a is moved onto the table,  is moved onto a and �nally b is moved onto .The idea is to map a planning problem to a logi program suh that stable models or-respond to valid plans. For formalizing bloks world planning we use situations wherefats hold. Planning is PSPACE-omplete [4℄ and one way of restriting the problem toan NP-omplete one is to bound the length of the plan. Hene, we assume that we havea limited number of situations t0; : : : ; tn where t0 is the initial situation and the availablesituations are given using fats of the form time(ti)  . A prediate nextstate spei�esthe order of the situations, i.e., for eah i = 0; : : : ; n � 1, nextstate(ti+1; ti) holds. Weemploy prediates on(X;Y; T ) (X is on Y in the situation T ) and moveop(X;Y; T ) (X ismoved onto Y in the situation T ) and assume that the available bloks are spei�ed usingfats of the form blok(b) .The initial onditions are straightforward to formalize. For instane, for the example aboveit is suÆient to inlude the fats on(a; b; t0) on(b; table; t0) on(; table; t0) In order to apture the goal onditions we employ a prediate goal(T ) whih holds in anysituation T where the goal onditions have been reahed. For the example above, theresulting rule is goal(T ) time(T );on(b; ; T );on(; a; T )The idea is that a valid plan orresponds to a stable model where the goal ondition hasbeen ahieved in some available situation. This is aptured by the following two rules.The third rule ensures that if prediate goal(T ) holds in a situation, then it holds also inall subsequent situations. This is employed later in the operator desriptions.goal  time(T ); goal(T ) not goalgoal(T2) nextstate(T2; T1); goal(T1)In order to formalize the preonditions and e�ets of the move operator we use the followingrules. The �rst rule spei�es the preonditions and uses the tehnique based on exeptions.21

An instane of the move operator is appliable if there are no exeptions, i.e., the objetto be moved and the destination are not overed and the move operator instane is notexpliit bloked (bloked move). The exeptions are then listed below. The e�et of themove operator an be stated diretly as given in the seond rule.moveop(X;Y; T ) time(T );blok(X);objet(Y );X 6= Y;on something(X;T );available(Y; T );not overed(X;T );not overed(Y; T );not bloked move(X;Y; T )on(X;Y; T2) blok(X);objet(Y );nextstate(T2; T1);moveop(X;Y; T1):on something(X;T ) blok(X);objet(Z);time(T );on(X;Z; T )available(table; T ) time(T )available(X;T )  blok(X);time(T );on something(X;T )overed(X;T )  blok(Z);blok(X);time(T );on(Z;X; T )objet(table) objet(X)  blok(X)It is enough to provide a frame axiom only for the prediate on and this an be statedompatly as a rule with exeptions where the exeptional situations are aptured usingthe prediate moving. on(X;Y; T2) nextstate(T2; T1);blok(X);objet(Y );on(X;Y; T1);not moving(X;T1)moving(X;T ) time(T );blok(X);objet(Y );moveop(X;Y; T )22
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What remains to be stated are the bloking onditions for the moves. The �rst set ofonditions overs the ases where the goal has been reahed or the instane of the moveoperator has not been hosen.bloked move(X;Y; T ) blok(X);objet(Y );time(T );goal(T )bloked move(X;Y; T ) time(T );blok(X);objet(Y );not moveop(X;Y; T )The seond set depends on whether onurreny is allowed, i.e., whether more than oneoperator an be applied in a situation. We allow this and blok only the operator instaneswhose e�ets are in onit, i.e., whih annot be arbitrary interleaved. Computationallythis seems advantageous as it dereases searh spae explosion due to interleavings ofindependent operators in linear planning.bloked move(X;Y; T ) blok(X);objet(Y );objet(Z);time(T );moveop(X;Z; T );Y 6= Z:bloked move(X;Y; T ) blok(X);objet(Y );time(T );moving(Y; T )bloked move(X;Y; T ) blok(X);blok(Y );blok(Z);time(T );moveop(Z; Y; T );X 6= ZThis kind of a onstraint formulation of planning allows exible integration of di�erentkinds of pruning rules. For example, we an exlude a move from the table bak to thetable or a move on top of something and then immediately to the table: blok(X);time(T );moveop(X; table; T );on(X; table; T ) nextstate(T2; T1);blok(X);objet(Y );moveop(X;Y; T1);moveop(X; table; T2)23

For a program onstruted like this it holds that the program has a stable model i� thereis a sequene of moves from the initial on�guration to a situation satisfying the goalonditions that an be exeuted onurrently in at most n steps. Note that a stable modelprovides diretly a valid plan with the fats of the form moveop(x; y; t) true in the model.A plan an be built just by arranging the fats in the order given by the situation argumentt. A valid sequential plan is obtained from this by arranging fats with the same situationargument in any linear order.The expressivity of logi program rules is exploited, e.g., in representing frame axiomsand bloking onditions. A very ompat representation is obtained with nie modular-ity properties, e.g., updating the representation with new bloks or operators is fairlystraightforward.8 ImplementationThere is a C++ implementation of LPSM alled Smodels [29, 30℄ whih implements thestable model semantis for range restrited funtion-free normal programs. It inludes twomodules: (i) smodels whih implements LPSM for ground programs and (ii) parse whihis the grounding proedure for smodels. We have developed a new grounding proedure,lparse, for the Smodels system whih is based on domain restrited programs withnon-reursive domains. The user does not need to expliate the domain prediates butlparse detets them automatially by using the dependeny graph for the program to �ndall non-reursively de�ned prediates. The ground instanes of these prediates are thenomputed eÆiently using database tehniques. The more restrited lass of programshandled by lparse enables it to work substantially more eÆiently than parse beauseof the use of database tehniques and beause it is able to generate the ground instanesof a rule independently of other rules. Furthermore, it inludes built-in prediates andfuntions for integer arithmeti. More details about the implementation tehniques oflparse and its performane ompared to parse and the dlv system an be found in [35℄.The implementation of the stable model semantis for ground programs in the Smodelssystem is based on bottom-up baktraking searh where the searh spae for stable modelsis pruned eÆiently by exploiting the minimality and groundedness properties of stablemodels. This is based on an approximation tehnique for stable models whih is loselyrelated to the well-founded semantis [37℄. The same approximation tehnique is employedin a powerful dynami searh heuristis.One of the underlying ideas in the implementation is that stable models are haraterized interms of their so-alled full sets, i.e., their omplements with respet to the negative atomsin the program (negative atoms in the program for whih the orresponding positive atomsare not inluded in the stable model) [28, 29℄. This haraterization, whih follows from theminimality and groundedness properties of stable models, implies that only negative bodyliterals ontribute to the size of the potential searh spae and not all atoms in the program.Hene, it is possible to employ new de�ned atoms without ompromising eÆieny, e.g.,in order to ahieve a learer or more suint representation of a problem. By the fullset haraterization it is lear that atoms whih appear only positively in the bodies donot inrease the potential searh spae but this seems to hold also for other atoms, e.g.,having strati�ed de�nitions. This is di�erent from, e.g., propositional logi where eahnew atom potentially doubles the initial searh spae for models whih is why the use24
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of new de�ned atoms is typially avoided when applying propositional logi. Hene, it isoneivable that the possibility to use new de�ned atoms without omputational overheadin LPSM an lead to ompat representations with attrative omputational propertiesomparing favorable to formulations in lassial logi. However, it is hard to omparerepresentations of the same problem in di�erent frameworks and more work is needed todetermine how muh an be gained in atual appliations.One of the advantages of the implementation method is that it has linear spae require-ments. This makes it possible to apply the stable model semantis also in areas whereresulting programs are highly non-strati�ed and an possess a large number of stablemodels. See [29, 30, 33℄, for more detailed information on the implementation tehniques.Smodels has turned out to be signi�antly more eÆient than other reent implementa-tions of the stable model semantis (e.g. [2, 7, 34, 11℄) and it is the �rst system that anhandle highly non-strati�ed programs with tens of thousands of ground rules.AvailabilityThe Smodels system is freely available at http://www.ts.hut.fi/pub/smodels/ .Doumentation and an extensive set of test ases an be obtained from the same loation.In order to make use of the system you will need a C++ ompiler and other standardtools suh as make and tar. The system has been developed under Linux and should workas is on any platform having the appropriate GNU tools installed.9 Experimental ResultsIn order to provide a avor of the performane of the system we report some resultson CSPs, ombinatorial graph problems and bloks world planning using the domainrestrited programs desribed in previous setions. Table 1 ontains results on standardCSPs.Table 2 presents results on ombinatorial graph problems. As test graphs we have usedrandom planar graphs whih are onstruted by Delaunay triangulation of randomly in-serted points in a plane. Here the plane funtion found in the Stanford GraphBase [23℄has been used. For example, p1000 means a random planar graph with 1000 verties.Table 3 ontains results on experiments involving hallenging bloks world examples. Weonsider three test ases:� large. is a 15 bloks problem whih is already diÆult for advaned domain inde-pendent planners suh as Graphplan [3℄,� large.d is a 17 bloks problem and� large.e a 19 bloks problem.We translate the examples to logi programs as desribed in Setion 7. Table 3 ontainstwo entries for eah problem: one reporting the time needed to �nd a valid plan withthe \optimal" number of situations given as input and one reporting the time needed toshow optimality, i.e., that no plan (no stable model) exists when the number of situation25

Table 1: Experimental results on standard onstraint satisfation problems.Problem Solutions Time (s)Pigeon 6/6 720 0.8Pigeon 8/7 0 4.6Pigeon 9/8 0 42.3Queens 8 92 2.1Queens 10 724 39.1Queens 16 �rst 13.3Queens 18 �rst 103Queens 20 �rst 368Shur 3/13 3 0.15Shur 3/14 0 0.13Shur 4/42 �rst 4.9Shur 4/43 �rst 5.2Shur 4/44 �rst 865Shur 4/44 273 4650Shur 4/45 0 6110

Table 2: Experimental results on ombinatorial graph problems.Problem Graph Solutions Time (s)3-ol p1000 0 3.33-ol p3000 0 10.13-ol p6000 0 20.34-ol p100 �rst 1.54-ol p300 �rst 13.14-ol p600 �rst 51.1h p20 �rst 0.2h p25 �rst 11.9h p29 �rst 0.9h p30 �rst 131
26
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Table 3: Results for the bloks world examples.problem Number of Number of Time (s)steps ground ruleslarge. 8 81682 23.27 72528 6.0large.d 9 128000 47.18 115110 11.5large.e 10 191622 1019 174100 17.3is dereased by one. For example, for large., the available situations are t0; : : : ; t8 and,hene, the number of steps for applying operators is 8. This means that fats time(t0) ; : : : ; time(t8)  are given as a part of the program. For showing optimality the fattime(t8) is removed.The time reported for eah test ase is the sum of the exeution times of smodels andlparse given a program with variables as input. Exeution time was measured usingthe Unix time ommand and it is the sum of user and system time. The time usedby lparse is usually small ompared to the time needed by smodels, exept when thenumber of ground rules is high. For example, for the largest planning example large.eit takes 11.5 s for lparse to generate the orresponding ground program and for the3-olorability problem for p6000 it takes 12.9 s to generate the orresponding groundprogram with 161 839 rules. The tests were performed using smodels version 1.12 andlparse version 0.9.19 (beta) on a Pentium II 266MHz with 128MB of memory and theLinux 2.0.35 operating system. The test ases are available at http://www.ts.hut.fi/pub/smodels/tests/lp-sp-tests.tar.gz.10 ConlusionsWe put forward logi programs with the stable model semantis as an interesting onstraintprogramming paradigm. The aim is to bring advantages of knowledge representation teh-niques provided by logi programs to onstraint programming in dynami domains suhas planning. However, the paradigm di�ers onsiderably from the usual logi program-ming methodology whih is based on goal-direted bakward haining query evaluationand where variables stand for arbitrary terms providing reursive data strutures builtusing funtion symbols. In the novel paradigm funtion symbols are not allowed and therole of more ompliated data strutures is played by the stable models. The idea is thata program is seen as a set of onstraints desribing valid solutions to a problem and thestable models of the program orrespond to the solutions satisfying the onstraints.Implementation methods for the stable model semantis have advaned signi�antly in re-ent years. However, the most ompetitive available methods for omputing stable modelsare based on the idea of working with ground rules. Hene, for a program with variablesa grounding proedure is needed for generating a variable-free program. As a pratialsolution to handling the grounding problem we introdue a sublass of programs, do-main restrited programs, as a basis for developing eÆient grounding proedures. It alsoprovides a framework for extending the paradigm with built-in prediates and funtions.27

We have taken the �rst steps towards a programming methodology for the new paradigmby presenting solutions to standard onstraint satisfation problems, ombinatorial graphproblems and planning problems. The aim has been to devise solutions that have attra-tive properties from a knowledge representation point of view. We are able to providemodular programs where the part of the program desribing the instane (e.g., the graphin question) is independent from the part apturing the onstraints for valid solutions(e.g., olorability onditions). Furthermore, our programs provide onstrutive solutionsin the sense that a valid solution (e.g., an assignment of olors to verties) an be readdiretly from a stable model of the program.We have developed an eÆient implementation of the paradigm based on domain restritedprograms. This is an extension of a previous implementation of the stable model semantis,the Smodels system. In partiular, we have developed a new eÆient grounding proedurefor Smodels whih is based on domain restrited programs with non-reursive domainsand whih inludes built-in funtions and prediates for integer arithmeti. Test resultson CSPs, graph problems and planning are provided to illustrate the urrent level ofperformane of our implementation. For example, for bloks world planning the resultsompare well with eÆient domain-independent planners suh as Graphplan.There are several interesting topis for further researh. In many appliations more ex-pressive rules ould be useful, e.g. for representing general disjuntive onditions. Whatseems to be needed are lassial inlusive and exlusive disjuntions instead of disjuntionswith a minimal model interpretation studied intensively in the logi programming setting.An interesting question is whether suh disjuntions an be inorporated without inreas-ing omputational omplexity substantially, i.e., whether key deision problems remain inNP for ground programs. Another interesting extension would be to assoiate numerialweights and values to atoms in order to apture, e.g., knapsak type of problems.%www aknowledgementsAknowledgementsThe author would like to thank the anonymous referees for their valuable omments onthe paper and Tommi Syrj�anen for implementing the new grounding proedure, lparse.Referenes[1℄ K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of delarative knowledge. InJ. Minker, editor, Foundations of Dedutive Databases and Logi Programming, pages89{148. Morgan Kaufmann Publishers, Los Altos, 1988.[2℄ C. Bell, A. Nerode, R.T. Ng, and V.S. Subrahmanian. Mixed integer programmingmethods for omputing nonmonotoni dedutive databases. Journal of the ACM,41(6):1178{1215, November 1994.[3℄ A.L. Blum and M.L. Furst. Fast planning through planning graph analysis. Arti�ialIntelligene, 90:281{300, 1997. 28
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